How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a.habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

CCS CONCEPTS

« Software and its engineering — Automated static analysis;
Software testing and debugging; - General and reference —
Empirical studies;

KEYWORDS

static bug checkers, bug finding, static analysis, Defects4]
ACM Reference Format:

Andrew Habib and Michael Pradel. 2018. How Many of All Bugs Do We Find?
A Study of Static Bug Detectors. In Proceedings of the 2018 33rd ACM/IEEE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE 18, September 3-7, 2018, Montpellier, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3238213

316

Michael Pradel
michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g.,
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bugs, e.g., collect information about abnormal runtime
behavior, crashes, and violations of safety properties, e.g., expressed
through assertions. Finally, developers use static bug detection tools,
which check the source code or parts of it for potential bugs.

In this paper, we focus on static bug detectors because they have
become increasingly popular in recent years and are now widely
used by major software companies. Popular tools include Google’s
Error Prone [1], Facebook’s Infer [7], or SpotBugs, the successor
to the widely used FindBugs tool [10]. These tools are typically
designed as an analysis framework based on some form of static
analysis that scales to complex programs, e.g., AST-based pattern
matching or data-flow analysis. Based on the framework, the tools
contain an extensible set of checkers that each addresses a specific
bug pattern, i.e., a class of bugs that occurs across different code
bases. Typically, a bug detector ships with dozens or even hundreds
of patterns. The main benefit of static bug detectors compared to
other bug finding approaches is that they find bugs early in the
development process, possibly right after a developer introduces a
bug. Furthermore, applying static bug detectors does not impose
any special requirements, such as the availability of tests, and can
be fully automated.

The popularity of static bug detectors and the growing set of
bug patterns covered by them raise a question: How many of all

https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213

ASE ’18, September 3-7, 2018, Montpellier, France

real-world bugs do these bug detectors find? Or in other words, what
is the recall of static bug detectors? Answering this question is
important for several reasons. First, it is an important part of as-
sessing the current state-of-the-art in automatic bug finding. Most
reported evaluations of bug finding techniques focus on showing
that a technique detects bugs and how precise it is, i.e., how many
of all reported warnings correspond to actual bugs rather than false
positives. We do not consider these questions here. In contrast,
practically no evaluation considers the above recall question. The
reason for this omission is that the set of “all bugs” is unknown (oth-
erwise, the bug detection problem would have been solved), making
it practically impossible to completely answer the question. Second,
understanding the strengths and weaknesses of existing static bug
detectors will guide future work toward relevant challenges. For
example, better understanding of which bugs are currently missed
may enable future techniques to cover previously ignored classes
of bugs. Third, studying the above question for multiple bug detec-
tors allows us to compare the effectiveness of existing tools with
each other: Are existing tools complementary to each other or does
one tool subsume another one? Fourth and finally, studying the
above question will provide an estimate of how close the current
state-of-the-art is to the ultimate, but admittedly unrealistic, goal
of finding all bugs.

To address the question of how many of all bugs do static bug
detectors find, we perform an empirical study with 594 real-world
bugs from 15 software projects, which we analyze with three widely
used static bug detectors. The basic idea is to run each bug detector
on a version of a program that contains a specific bug, and to check
whether the bug detector finds this bug. While being conceptually
simple, realizing this idea is non-trivial for real-world bugs and bug
detectors. The main challenge is to decide whether the set of warn-
ings reported by a bug detector captures the bug in question. To
address this challenge, we present a novel methodology that com-
bines automatic line-level matching, based on the lines involved in
the bug fix, and a manual analysis of the matched lines. The manual
analysis is crucial because a bug detector may coincidentally flag a
line as buggy due to a reason different from the actual bug, such as
an unrelated problem or a false positive. Since our study focuses on
a finite set of bugs, we cannot really answer how many of all bugs
are found. Instead, we approximate the answer by considering a
large and diverse set of bugs from various real-world projects.

Our study relates to but significantly differs from a previous study
by Thung et al. [39, 40]. Their work also addresses the question
of how many of all real-world bugs are found by static checkers.
Our work differs in the methodology used to answer this question:
We manually validate whether the warnings reported by a tool
correspond to a specific bug in the code, instead of checking whether
the lines flagged by a tool include the faulty lines. This manual
validation leads to significantly different results than the previous
study because many warnings coincidentally match a faulty line
but are actually unrelated to the specific bug. Another difference is
that our study focuses on a more recent and improved generation
of static bug detectors. Thung et al’s study considers what might be
called the first generation of static bug detectors for Java, e.g., PMD
and CheckStyle. While these tools contributed significantly to the
state-of-the-art when they were initially presented, it has also been
shown that they suffer from severe limitations, in particular, large

317

Andrew Habib and Michael Pradel

numbers of false positives. Huge advances in static bug detection
have been made since then. Our study focuses on a novel generation
of static bug detectors, including tools that have been adopted by
major industry players and that are in wide use.

The main findings of our study are the following:

o The three bug detectors together reveal 27 of the 594 studied
bugs (4.5%). This non-negligible number is encouraging and
shows that static bug detectors can be beneficial.

o The percentage of detected among all bugs ranges between
0.84% and 3%, depending on the bug detector. This result
points out a significant potential for improvement, e.g., by
considering additional bug patterns. It also shows that check-
ers are mostly complementary to each other.

e The majority of missed bugs are domain-specific problems
not covered by any existing bug pattern. At the same time,
several bugs could have been found by minor variants of the
existing bug detectors.

2 METHODOLOGY

This section presents our methodology for studying which bugs
are detected by static bug detectors. At first, we describe the bugs
(§ 2.1) and bug detection tools (§ 2.2) that we study. Then, we
present our experimental procedure for identifying and validating
matches between the warnings reported by the bug detectors and
the real-world bugs (§ 2.3). Finally, we discuss threats to validity
in § 2.4.

2.1 Real-World Bugs

Our study builds on an extended version of the Defects4] data set,
a collection of bugs from popular Java projects. In total, the data
set consists of 597 bugs that are gathered from different versions
of 15 projects. We use Defects4] for this study for three reasons.
First, it provides a representative set of real-world bugs that has
been gathered independently of our work. The bugs cover a wide
spectrum of application domains and have been sampled in a way
that does not bias the data set in any relevant way. Second, the data
set is widely used for other bug-related studies, e.g., on test gen-
eration [38], mutation testing [13], fault localization [26], and bug
repair [20], showing that is has been accepted as a representative
set of bugs. Third, Defects4] provides not only bugs but also the
corresponding bug fixes, as applied by the actual developers. Each
bug is associated with two versions of the project that contains
the bug: a buggy version, just before applying the bug fix, and a
fixed version, just after applying the bug fix. The bug fixes have
been isolated by removing any irrelevant code changes, such as
new features or refactorings. As a result, each bug is associated
with one or more Java classes, i.e., source code files that have been
modified to fix the bug. The availability of fixes is important not
only to validate that the developers considered a bug as relevant,
but also to understand its root cause.

The current official version of Defects4] (version 1.1.0) consists
of 395 bugs collected from 6 Java projects. A recent addition to these
bugs extends the official release with 202 additional bugs from 9
additional projects.! In our work, we use the extended version of
the data set and refer to it as “Defects4]”. Table 1 lists the projects

Lhttps://github.com/rjust/defects4j/pull/112

https://github.com/rjust/defects4j/pull/112

How Many of All Bugs Do We Find?

Table 1: Projects and bugs of Defects4].

ID Project Bugs
Original Defects4J:

Chart JFreeChart 26
Closure Google Closure 133
Lang Apache commons-lang 64 (65)
Math Apache commons-math 106
Mockito Mockito framwork 38
Time Joda-Time 27

Total of 6 projects 394 (395)
Extended Defects4F:

Codec Apache commons-codec 21 (22)
Cli Apache commons-cli 24

Csv Apache commons-csv 12
JXPath Apache commons-JXPath 14
Guava Guava library 9
JCore Jackson core module 13
JDatabind Jackson data binding 39
JXml Jackson XML utilities 5
Jsoup Jsoup HTML parser 63 (64)
Total of 9 projects 200 (202)
Total of 15 projects 594 (597)

and bugs in the data set.” We exclude three of the 597 bugs for
technical reasons: Lang-48 because Error Prone does not support
Java 1.3, and Codec-5 and Jsoup-4 because they introduce a new
class in the bug fix, which does not match our methodology that
relies on analyzing changes to existing files.

2.2 Static Bug Detectors

We study three static bug detectors for Java: (i) Error Prone [1],
a tool developed by Google and is integrated into their Tricorder
static analysis ecosystem [36]; (ii) Infer [7], a tool developed and
used internally by Facebook; and (iii) SpotBugs, the successor of the
pioneering FindBugs [10] tool. These tools are used by professional
software developers. For example, Error Prone and Infer are auto-
matically applied to code changes to support manual code review
at Google and Facebook, respectively. All three tools are available
as open-source. We use the tools with their default configuration.

2.3 Experimental Procedure

Given a set of bugs and a set of static bug detectors, the overall goal
of the methodology is to identify those bugs among the set B of
provided bugs that are detected by the given tools. We represent
a detected bug as a tuple (b, w), where b € B is a bug and w is
a warning that points to the buggy code. A single bug b may be
detected by multiple warnings, e.g., (b, w1) and (b, wy), and a single
warning may point to multiple bugs, e.g., (b1, w) and (b2, w).

A naive approach to assess whether a tool finds a particular bug
would be to apply the tool to the buggy version of the code and to

2We refer to bugs using the notation ProjectID-N, where N is a unique number.

318

ASE ’18, September 3-7, 2018, Montpellier, France

Bugs + fixes Bug detectors

Identify candidates for detected bugs

Diff-based Fixed warnings-based

Candidates for detected bugs
Manual inspection of candidates

Detected bugs

Figure 1: Overview of our methodology.

manually inspect each reported warning. Unfortunately, static bug
detectors may produce many warnings and manually inspecting
each warning for each buggy version of a program does not scale
to the number of bugs we consider. Another possible approach is to
fully automatically match warnings and bugs, e.g., by assuming that
every warning at a line involved in a bug fix points to the respective
bug. While this approach solves the scalability problem, it risks to
overapproximate the number of detected bugs. The reason is that
some warnings may coincidentally match a code location involved
in a bug, but nevertheless do not point to the actual bug.

Our approach to identify detected bugs is a combination of au-
tomatic and manual analysis, which reduces the manual effort
compared to inspecting all warnings while avoiding the overap-
proximation problem of a fully automatic matching. To identify
the detected bugs, we proceed in two main steps, as summarized
in Figure 1. The first step automatically identifies candidates for
detected bugs, i.e., pairs of bugs and warnings that are likely to
match each other. We apply three variants of the methodology that
differ in how to identify such candidates:

e an approach based on differences between the code before
and after fixing the bug,

e an approach based on warnings reported for the code before
and after fixing the bug, and

e the combination of the two previous approaches.

The second step is to manually inspect all candidates to decide
which bugs are indeed found by the bug detectors. This step is
important to avoid counting coincidental matches as detected bugs.

2.3.1 lIdentifying Candidates for Detected Bugs.

Common Definitions. We explain some terms and assumptions
used throughout this section. Given a bug b, we are interested
in the set L, of changed lines, i.e., lines that were changed when
fixing the bug. We assume that these lines are the locations where
developers expect a static bug detector to report a warning. In
principle, this assumption may not hold because the bug location
and the fix location may differ. We further discuss this potential
threat to validity in § 2.4. We compute the changed lines based on
the differences, or short, the diff, between the code just before and
just after applying the bug fix. The diff may involve multiple source
code files. We compute the changed lines as lines that are modified

ASE ’18, September 3-7, 2018, Montpellier, France

or deleted, as these are supposed to directly correspond to the bug.
In addition, we consider a configurable window of lines around the
location of newly added lines. As a default value, we use a window
size of [-1,1].

Applying a bug detector to a program yields a set of warnings.
We refer to the sets of warnings for the program just before and
just after fixing a bug b as Wyefore(b) and Wypre,(b), or simply
Whefore and Wypye, if the bug is clear from the context. The bug
detectors we use can analyze entire Java projects. Since the purpose
of our study is to determine whether specific bugs are found, we
apply the analyzers only to the files involved in the bug fix, i.e.,
files that contain at least one changed line [€ L. We also provide
each bug detector the full compile path along with all third-party
dependencies of each buggy or fixed program so that inter-project
and third-party dependencies are resolved. The warnings reported
when applying a bug detector to a file are typically associated with
specific line numbers. We refer to the lines that are flagged by a
warning w as lines(w).

Diff-based Methodology. One approach to compute a set of candi-
dates for detected bugs is to rely on the diff between the buggy and
the fixed versions of the program. The intuition is that a relevant
warning should pinpoint one of the lines changed to fix the bug.
In this approach, we perform the following for each bug and bug
detector:

(1) Compute the lines that are flagged with at least one warning
in the code just before the bug fix:

U

Wewbefore

Lwarnings = lines(w)

(2) Compute the candidates of detected bugs as all pairs of a bug
and a warning where the changed lines of the bug overlap
with the lines that have a warning:

B?;J;J; ={.w)|Lp N Lwarnings # 0}
For example, the bug in Figure 2a is a candidate for a bug detected
by SpotBugs because the tool flagged line 55, which is also in the

set of changed lines.

Fixed Warnings-based Methodology. As an alternative approach
for identifying a set of candidates for detected bugs, we compare
the warnings reported for the code just before and just after fixing a
bug. The intuition is that a warning caused by a specific bug should
disappear when fixing the bug. In this approach, we perform the
following for each bug and bug detector:

(1) Compute the set of fixed warnings, i.e., warnings that disap-
pear after applying the bug fix:

Wfixed = Wbefore \ Wafter

(2) Compute the candidates for detected bugs as all pairs of a
bug and a warning where the warning belongs to the fixed

warnings set:
ixed

BN = ((bow) | w € Wyiea)

In this step, we do not match warning messages based on line
numbers because line numbers may not match across the buggy
and fixed files due to added and deleted code. Instead, we compare

319

Andrew Habib and Michael Pradel

the messages based on the warning type, category, severity, rank,
and code entity, e.g., class, method, and field.

For example, Figure 2c shows a bug that the fixed warnings-
based approach finds as a candidate for a detected bug by Error
Prone because the warning message reported at line 175 disappears
in the fixed version. In contrast, the approach misses the candidate
bug in Figure 2a because the developer re-introduced the same kind
of bug in line 62, and hence, the same warning is reported in the
fixed code.

Combined Methodology. The diff-based approach and the fixed
warnings-based approach may yield different candidates for de-
tected bugs. For instance, both approaches identify the bugs in Fig-
ure 2¢ and Figure 2d as candidates, whereas only the diff-based
approach identifies the bugs in Figure 2a and Figure 2b. Therefore,
we consider as a third variant of our methodology the combination
of the fixed warnings and the diff-based approach:

i di ixed
B(C:Zr:;me = Bca];]; v B(/jand
Unless otherwise mentioned, the combined methodology is the
default in the remainder of the paper.

2.3.2 Manual Inspection and Classification of Candidates. The
automatically identified candidates for detected bugs may contain
coincidental matches of a bug and warning. For example, suppose
that a bug detector warns about a potential null dreference at a
specific line and that this line gets modified as part of a bug fix. If
the fixed bug is completely unrelated to dereferncing a null object,
then the warning would not have helped a developer in spotting
the bug.

To remove such coincidental matches, we manually inspect all
candidates for detected bugs and compare the warning messages
against the buggy and fixed versions of the code. We classify each
candidate into one of three categories: (i) If the warning matches
the fixed bug and the fix modifies lines that affect the flagged bug
only, then this is a full match. (ii) If the fix targets the warning but
also changes other lines of code not relevant to the warning, then
it is a partial match. (iii) If the fix does not relate to the warning
message at all, then it is a mismatch.

For example, the bug in Figure 2d is classified as a full match since
the bug fix exactly matches the warning message: to prevent aNull-
PointerException on the value returned by ownerDocument(), a
check for nullness has been added in the helper method getOutput-
Settings(), which creates an empty Document ("") object when
ownerDocument () returns null.

As an example of a partial match, consider the bug in Figure 2a.
As we discussed earlier in § 2.3.1, the developer attempted a fix by
applying proper check and cast in lines 58-63 of the fixed version.
We consider this candidate bug a partial match because the fixed
version also modifies line 60 in the buggy file by changing the
return value of the method hashCode (). This change is not related
to the warning reported by SpotBugs. It is worth noting that the
fact that the developer unfortunately re-introduced the same bug
in line 62 of the fixed version does not contribute to the partial
matching decision.

Finally, the bug in Figure 2b is an example of a mismatch because
the warning reported by Error Prone is not related to the bug fix.

How Many of All Bugs Do We Find? ASE ’18, September 3-7, 2018, Montpellier, France

Buggy code: Bug fix Fixed code:
53 @Override 53 @Override
s4 public boolean equals(Object o) { s4 public boolean equals(Object o) {
55 return method.equals(o); 55 if (this == 0) {
56} 56 return true;
57 57 }
58 @Override 58 if (o instanceof DelegatingMethod) {
59 public int hashCode() { 59 DelegatingMethod that = (DelegatingMethod) o;
60 return 1; 60 return method.equals(that.method);
61 } 61 } else {
62 return method.equals(o);
63 }
64 }

65

66 @Override

67 public int hashCode() {

68 return method.hashCode();

69 }

(a) Bug Mockito-11. Warning by SpotBugs at line 55: Equality check for operand not compatible with this. L, = {54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 67, 68, 69 }. Found by diff-based methodology. Classification: Partial match.

Buggy code: Bug fix Fixed code:
1602 public Dfp multiply(final int x) { 1602 public Dfp multiply(final int x) {
1603 return multiplyFast(x); 1603 if (x >= 0 && x < RADIX) {
1604 } 1604 return multiplyFast(x);
1605 } else {
1606 return multiply(newInstance(x));
1607 }
1608}

(b) Bug Math-17. Warning by Error Prone at line 1602: Missing @Override. L; = { 1602, 1603, 1604, 1605, 1606, 1607, 1608 }. Found by
diff-based methodology. Classification: Mismatch.

Buggy code: Bug fix Fixed code:

173 public Week(Date time, TimeZone zone) { 173 public Week(Date time, TimeZone zone) {

174 // defer argument checking... 174 // defer argument checking...

175 this(time, RegularTimePeriod.DEFAULT_TIME_ZONE, 175 this(time, zone, Locale.getDefault());
Locale.getDefault()); 176}

176 }

(c) Bug Chart-8. Warning by Error Prone at line 175: Chaining constructor ignores parameter. L;, = {175 }. Found by: Diff-based method-
ology and fixed warnings-based methodology. Classification: Full match.

Buggy code: Bug fix Fixed code:
214 public Document ownerDocument() { 362 protected void outerHtml(StringBuilder accum) {
215 if (this instanceof Document) 363 new NodeTraversor(new OuterHtmlVisitor(accum,
216 return (Document) this; getOutputSettings())).traverse(this);
217 else if (parentNode == null) 364}
218 return null; 365
219 else 366 // if this node has no document (or parent),
220 return parentNode.ownerDocument(); retrieve the default output settings
221 } 367 private Document.OutputSettings
getOutputSettings() {
. 368 return ownerDocument() != null ?
362 protected void outerHtml(StringBuilder accum) { ownerDocument () .outputSettings() : (new
363 new NodeTraversor(new Document("")).outputSettings();
OuterHtmlVisitor(accum, ownerDocument() 369 }
.outputSettings()))
.traverse(this);
364}

(d) Bug Jsoup-59. Warning by Infer at line 363: null dereference. L;, = { 363, 364, 365, 366, 367, 368, 369 }. Found by: Diff-based method-
ology and fixed warnings-based methodology. Classification: Full match.

Figure 2: Candidates for detected bugs and their manual classification.

320

ASE ’18, September 3-7, 2018, Montpellier, France

2.3.3 Error Rate. Beyond the question of how many of all bugs
are detected, we also consider the error rate of a bug detector. Intu-
itively, it indicates how many warnings the bug detector reports.
We compute the error rate by normalizing the number of reported
warnings to the number of analyzed lines of code:

2 Whepore(d)]
beB bef

2 LoC(f)

ER =
z
beB fefiles(b)

where files(b) are the files involved in fixing bug b and LoC(f) yields
the number of lines of code of a file.

2.4 Threats to Validity

As for all empirical studies, there are some threats to the validity
of the conclusions drawn from our results. One limitation is the
selection of bugs and bug detectors, both of which may or may not
be representative for a larger population. To mitigate this threat,
we use a large set of real-world bugs from a diverse set of popular
open-source projects. Moreover, the bugs have been gathered inde-
pendently of our work and have been used in previous bug-related
studies [13, 20, 26, 38]. For the bug detectors, we study tools that are
widely used in industry and which we believe to be representative
for the current state-of-the-art. Despite these efforts, we cannot
claim that our results generalize beyond the studied artifacts.

Another threat to validity is that our methodology for identify-
ing detected bugs could, in principle, both miss some detected bugs
and misclassify coincidental matches as detected bugs. A reason for
potentially missing detected bugs is our assumption that the lines
involved in a bug fix correspond to the lines where a developer
expects a warning to be placed. In principle, a warning reported at
some other line might help a developer to find the bug, e.g., because
the warning eventually leads the developer to the buggy code loca-
tion. Since we could only speculate about such causal effects, we
instead use the described methodology. The final decision whether
a warning corresponds to a bug is taken by a human and therefore
subjective. To address this threat, both authors discussed every
candidate for a detected bug where the decision is not obvious.

A final threat to validity results from the fact that static bug
detectors may have been used during the development process
of the studied projects. If some of the developers of the studied
projects use static bug detectors before checking in their code, they
may have found some bugs that we miss in this study. As a result,
our results should be understood as an assessment of how many
of those real-world bugs that are committed to the version control
systems can be detected by static bug detectors.

3 EXPERIMENTAL RESULTS

This section presents the results of applying our methodology to
594 bugs and three bug detectors. We start by describing some
properties of the studied bugs (§ 3.1) and the warnings reported
by the bug detectors (§ 3.2). Next, we report on the candidates for
detected bugs (§ 3.3) and how many of them could be manually
validated and their kinds (§ 3.4), followed by a comparison of the
studied bug detectors (§ 3.5). To better understand the weaknesses
of current bug detectors, § 3.6 discusses why the detectors miss

321

Andrew Habib and Michael Pradel

» 450 450
2 400 400
2 350 350
S 300 300
G 250 250
2 200 200
S 150 150 128
Z 100 64 100
54 44
58 B 12 10 4 1 1 14 58 HEES 6 1 1
12 3 4 5 6 7 M \ho’%\bafy,@«@@@
E RS B G

Number of buggy files Diff size between buggy and fixed versions (LoC)

(b) Total size of diffs between
buggy and fixed files.

(a) Number of buggy files.

Figure 3: Properties of the studied bugs.

Table 2: Warnings generated by each tool. The minimum,
maximum, and average numbers of warnings are per bug
and consider all files involved in the bug fix.

‘Warnings
Per bug
Tool Min Max Avg Total Error rate
Error Prone 0 148 7.58 4,402 0.01225
Infer 0 36 033 198 0.00055
SpotBugs 0 47 1.1 647 0.0018
Total 5,247

many bugs. Finally, § 3.7 empirically compares the three variants
of our methodology.

3.1 Properties of the Studied Bugs

To better understand the setup of our study, we measure several
properties of the 594 studied bugs. Figure 3a shows how many files
are involved in fixing a bug. For around 85% of the bugs, the fix
involves changing a single source code file. Figure 3b shows the
number of lines of code in the diff between the buggy and the fixed
versions. This measure gives an idea of how complex the bugs and
their fixes are. The results show that most bugs involve a small
number of lines: For 424 bugs, the diff size is between one and nine
lines of code. Two bugs have been fixed by modifying, deleting, or
inserting more than 100 lines.

3.2 Warnings Reported by the Bug Detectors

The first step in our methodology is running each tool on all files
involved in each of the bugs. Table 2 shows the minimum, maximum,
and average number of warnings per bug, i.e., in the files involved
in fixing the bug, the total number of warnings reported by each
tool, and the error rate as defined in § 2.3.3. We find that Error
Prone reports the highest number of warnings, with a maximum of
148 warnings and an average of 7.58 warnings per bug. This is also
reflected by an error rate of 0.01225.

The studied bug detectors label each warning with a description
of the potential bug. Table 3 shows the top 5 kinds of warnings
reported by each tool. The most frequent kind of warning by Error
Prone is about missing the @verride annotation when a method

How Many of All Bugs Do We Find?

Table 3: Top 5 warnings reported by each static checker.

Warning Count
Error Prone
Missing @0verride 3211
Comparison using reference equality 398
Boxed primitive constructor 234
Operator precedence 164
Type parameter unused in formals 64
Infer
null dereference 90
Thread safety violation 43
Unsafe @GuardedBy access 30
Resource leak 29

Method with mutable return type re- 1
turns immutable collection

SpotBugs
switch without default 109
Inefficient Number constructor 79
Read of unwritten field 45
Method naming convention 37
Reference to mutable object 31

overrides a method with the same signature in its parent class. In-
fer’s most reported kind of warning complains about a potential
null dereference. Finally, the most frequent kind of warning by
SpotBugs is related to missing the default case in a switch state-
ment. The question how many of these warnings point to a valid
problem (i.e., true positives) is outside of the scope of this paper.

3.3 Candidates for Detected Bugs

Given the number of reported warnings, which totals to 5,247 (Ta-
ble 2), it would be very time-consuming to manually inspect each
warning. The automated filtering of candidates for detected bugs
yields a total of 153 warnings and 89 candidates (Table 4), which
significantly reduces the number of warnings and bugs to inspect.
Compared to all reported warnings, the selection of candidates
reduces the number of warnings by 97%.

The number of warnings is greater than the number of candidates
because we count warnings and candidates obtained from all tools
together and each tool could produce multiple warnings per line(s).

3.4 Validated Detected Bugs

To validate the candidates for detected bugs, we inspect each of
them manually. Based on the inspection, we classify each candidate
as a full match, a partial match, or a mismatch, as described in § 2.3.2.
Overall, the three tools found 31 bugs, as detailed in the table
in Figure 4. After removing duplicates, i.e., bugs found by more
than one tool, there are 27 unique validated detected bugs.

We draw two conclusions from these results. First, the fact that
27 unique bugs are detected by the three studied bug detectors
shows that these tools would have had a non-negligible impact, if
they would have been used during the development of the studied

322

ASE ’18, September 3-7, 2018, Montpellier, France

SpotBugs
Tool Bugs
Error Prone 8 14
Infer 5 2 >
SpotBugs 18 0
Total: 31 6 0 3

Total of 27 unique bugs

Error Prone Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

programs. This result is encouraging for future work on static bug
detectors and explains why several static bug detection tools have
been adopted in industry. Second, even when counting both partial
and full matches, the overall bug detection rate of all three bug de-
tectors together is only 4.5%. While reaching a detection anywhere
close to 100% is certainly unrealistic, e.g., because some bugs require
a deep understanding of the specific application domain, we believe
that the current state-of-the-art leaves room for improvement.

To get an idea of the kinds of bugs the checkers find, we describe
the most common patterns that contribute to finding bugs. Out
of the eight bugs found by Error Prone, three are due to missing
an @Override annotation, and two bugs because the execution
may fall through a switch statement. For the five bugs found by
Infer, four bugs are potential null deferences. Out of the 18 bugs
detected by SpotBugs, three are discovered by pointing to dead
local stores (i.e., unnecessarily computed values), and two bugs are
potential null deferences. Finally, the two bugs found by both Infer
and SpotBugs are null deferences, whereas the two bugs found by
both Error Prone and SpotBugs are a string format error and an
execution that may fall through a switch statement.

3.5 Comparison of Bug Detectors

The right-hand side of Figure 4 shows to what extent the bug
detectors complement each other. SpotBugs finds most of the bugs,
18 of all 27, of which 14 are found only by SpotBugs. Error Prone
finds 6 bugs that are not found by any other tool, and Infer finds 3
bugs missed by the other tools. We conclude that the studied tools
complement each other to a large extent, suggesting that developers
may want to combine multiple tools and that researchers could
address the problem of how to reconcile warnings reported by
different tools.

3.6 Reasons for Missed Bugs

To better understand why the vast majority of bugs are not detected
by the studied bug detectors, we manually inspect and categorize
some of the missed bugs. We inspect a random sample of 20 of
all bugs that are not detected by any bug detector. For each sam-
pled bug, we try to understand the root cause of the problem by
inspecting the diff and by searching for any issue reports associated
with the bug. Next, we carefully search the list of bug patterns
supported by the bug detectors to determine whether any of the
detectors could have matched the bug. If there is a bug detector
that relates to the bug, e.g., by addressing a similar bug pattern,
then we experiment with variants of the buggy code to understand

ASE ’18, September 3-7, 2018, Montpellier, France

why the detector has not triggered an alarm. Based on this process,
we have the two interesting findings.

3.6.1 Domain-specific Bugs. First, the majority of the missed
bugs (14 out of 20) are domain-specific problems not related to any
of the patterns supported by the bug checkers. The root causes
of these bugs are mistakes in the implementation of application-
specific algorithms, typically because the developer forgot to handle
a specific case. Moreover, these bugs manifest in ways that are dif-
ficult to identify as unintended without domain knowledge, e.g., by
causing an incorrect string to be printed or an incorrect number
to be computed. For example, Math-67 is a bug in the implementa-
tion of a mathematical optimization algorithm that returns the last
computed candidate value instead of the best value found so far.
Another example is Closure-110, a bug in a JavaScript compiler that
fails to properly handle some kinds of function declarations. Finally,
Time-14 is due to code that handles dates but forgot to consider
leap years and the consequences of February 29.

3.6.2 Near Misses. Second, some of the bugs (6 out of 20) could
be detected with a more powerful variant of an existing bug detec-
tor. We distinguish two subcategories of these bugs. On the one
hand, the root causes of some bugs are problems targeted by at least
one existing bug detector, but the current implementation of the
detector misses the bug. These bugs manifest through a behavior
that is typically considered unintended, such as infinite recursion
or out-of-bounds array accesses. For example, Commons-Csv-7 is
caused by accessing an out-of-bounds index of an array, which is
one of the bug patterns searched for by SpotBugs. Unfortunately,
the SpotBugs checker is intra-procedural, while the actual bug com-
putes the array index in one method and then accesses the array
in another method. Another example is Lang-49, which causes an
infinite loop because multiple methods call each other recursively,
and the conditions for stopping the recursion miss a specific input.
Both Error Prone and SpotBugs have checkers for infinite loops
caused by missing conditions that would stop recursion. However,
these checkers target cases that are easier to identify than Lang-49,
which would require inter-procedural reasoning about integer val-
ues. A third example in this subcategory is Chart-5, which causes an
IndexOutOfBoundsException when calling ArrayList.add. The
existing checker for out-of-bounds accesses to arrays might have
caught this bug, but it does not consider ArrayLists.

On the other hand, the root causes of some bugs are problems
that are similar to but not the same as problems targeted by an ex-
isting checker. For example, Commons-Codec-8 is about forgetting
to override some methods of the JDK class FilterInputStream.
While SpotBugs and Error Prone have checkers related to streams,
including some that warn about missing overrides, none of the
existing checkers targets the methods relevant in this bug.

3.6.3 Implications for Future Work. We draw several conclu-
sions from our inspection of missed bugs. The first and perhaps
most important is that there is a huge need for bug detection tech-
niques that can detect domain-specific problems. Most of the ex-
isting checkers focus on generic bug patterns that occur across
projects and often even across domains. However, as most of the
missed bugs are domain-specific, future work should complement
the existing detectors with techniques beyond checking generic bug

323

Andrew Habib and Michael Pradel

Table 4: Candidate warnings (W) and bugs (B) obtained from
the automatic matching,.

Approach
Diff-based ‘ Fixed warnings ‘ Combined
Tool W B|W B| W B
Error Prone 51 33 | 18 14 53 35
Infer 30 91 14 6 32 11
SpotBugs 51 3229 22| 68 43
Total: 132 74 61 42153 89

patterns. One promising direction could be to consider informal
specifications, such as natural language information embedded in
code or available in addition to code.

We also conclude that further work on sophisticated yet practical
static analysis is required. Given that several currently missed bugs
could have been found by inter-procedural variants of existing intra-
procedural analyses suggests room for improvement. The challenge
here is to balance precision and recall: Because switching to inter-
procedural analysis needs to approximate, e.g., call relationships,
this step risks to cause additional false positives. Another promising
direction suggested by our results is to generalize bug detectors
that have been developed for a specific kind of problem to related
problems, e.g., ArrayLists versus arrays.

Finally, our findings suggest that some bugs are probably easier
to detect with techniques other than static checkers. For example,
the missed bugs that manifest through clear signs of misbehavior,
such as an infinite loop, are good candidates for fuzz-testing with
automated test generators.

3.7 Assessment of Methodologies

We compare the three variants of our methodology and validate
that the manual inspection of candidates of detected bugs is crucial.

3.7.1 Candidates of Detected Bugs. Our methodology for iden-
tifying candidates for detected bugs has three variants (§ 2.3.1).
Table 4 compares them by showing for each variant how many
warnings and bugs it identifies as candidates. The number of warn-
ings is larger than the number of bugs because the lines involved
in a single bug may match multiple warnings. Overall, identify-
ing candidates based on diffs yields many more warnings, 132 in
total, than by considering which warnings are fixed by a bug fix,
which yields 61 warnings. Combining the two methodologies by
considering the union of candidates gives a total of 153 warnings
corresponding to 89 bugs. Since more than one static checker could
point to the same bug, the total number of unique candidates for
detected bugs by all tools together boils down to 79 bugs.

Figure 5 visualizes how the variants of the methodology comple-
ment each other. For example, for Error Prone, the fixed warnings-
based approach finds 14 candidates, 2 of which are only found by
this approach. The diff-based technique finds 21 candidates not
found by the fixed warnings approach. Overall, the diff-based and
the fixed warnings-based approaches are at least partially comple-
mentary, making it worthwhile to study and compare both.

How Many of All Bugs Do We Find?

Diff-based
Fixed warnings-based

21 12 2 5 4 2 21 11 11

Error Prone Infer SpotBugs
Figure 5: Candidate detected bugs using the two different au-

tomatic matching techniques.

3.7.2 Validated Detected Bugs. Figure 6 shows how many of the
candidates obtained with the diff-based and the fixed warnings-
based approach we could validate during the manual inspection.
The left chart of Figure 6a shows the results of manually inspecting
each warning matched by the diff-based approach. For instance,
out of the 51 matched warnings reported by Error Prone, 6 are full
matches and 2 are partial matches, whereas the remaining 43 do not
correspond to any of the studied bugs. The right chart in Figure 6a
shows how many of the candidate bugs are actually detected by
the reported warnings. For example, out of 9 bugs that are possibly
detected by Infer, we have validated 3. Figure 6b and Figure 6¢ show
the same charts for the fixed warnings-based approach and the
combined approach.

The comparison shows that the diff-based approach yields many
more mismatches than the fixed warnings-based approach. Given
this result, one may wonder whether searching for candidates only
based on fixed warnings would yield all detected bugs. In Figure 7,
we see for each bug detector, how many unique bugs are found
by the two automatic matching approaches. For both Error Prone
and Infer, although the diff-based approach yields a large number
of candidates, the fixed warnings-based methodology is sufficient
to identify all detected bugs. For SpotBugs, though, one detected
bug would be missed when inspecting only the warnings that have
been fixed when fixing the bug. The reason is bug Mockito-11
in Figure 2a. The fixed warnings-based methodology misses this
bug because the bug fix accidentally re-introduces another warning
of the same kind, at line 62 of the fixed code.

In summary, we find that the fixed warnings-based approach
requires less manual effort while revealing almost all detected bugs.
This result suggests that future work could focus on the fixed
warnings-based methodology, allowing such work to manually
inspect even more warnings than we did.

3.7.3 Manual Inspection. Table 4 shows that the combined ap-
proach yields 153 candidate warnings corresponding to 89 (79
unique) bugs. However, the manual validation reveals that only 34
of those warnings and a corresponding number of 31 (27 unique)
bugs correspond to actual bugs, whereas the remaining matches
are coincidental. Out of the 34 validated candidates, 22 are full
matches and 12 are partial matches (Figure 6¢). In other words,
78% of the candidate warnings and 66% of the candidate bugs are
spurious matches, i.e., the warning is about something unrelated to
the specific bug and only happens to be on the same line.

These results confirm that the manual step in our methodology
is important to remove coincidental matches. Omitting the manual
inspection would skew the results and mislead the reader to believe

324

ASE ’18, September 3-7, 2018, Montpellier, France

that more bugs are detected. This skewing of results would be even
stronger for bug detectors that report more warnings per line of
code, as evidenced in an earlier study [39].

To ease reproducibility and to enable others to build on our results,
full details of all results are available online.’

4 RELATED WORK

Studies of Static Bug Detectors. Most existing studies of static
bug detectors focus on precision, i.e., how many of all warnings
reported by a tool point to actual bugs [34, 41, 45]. In contrast, our
study asks the opposite question: What is the recall of static bug
detectors, i.e., how many of all (known) bugs are found? Another
difference to existing studies is our choice of static bug detectors:
To the best of our knowledge, this is the first paper to study the
effectiveness of Error Prone, Infer, and SpotBugs.

The perhaps most related existing work is a study by Thung et
al.[39, 40] that also focuses on the recall of static bug detectors. Our
work differs in the methodology, because we manually validate
each detected bug, and in the selection of bugs and bug detectors,
because we focus on more recent, industrially used tools. As a result
of our improved methodology, our results differ significantly: While
they conclude that between 64% and 99% of all bugs are partially
or fully detected, we find that only 4.5% of all studied bugs are
found. The main reason for this difference is that some of the bug
detectors used by Thung et al. report a large number of warnings.
For example, a single tool alone reports over 39,000 warnings for
the Lucene benchmark (265,821 LoC), causing many lines to be
flagged with at least one warning with error rate 0.15 (§ 2.3.3).
Since their methodology fully automatically matches source code
lines and lines with warnings, most bugs appear to be found. Instead,
we manually check whether a warning indeed corresponds to a
particular bug to remove false matches.

To facilitate evaluating bug detection techniques, several bench-
marks of bugs have been proposed. BugBench [18] consists of 17
bugs in C programs. Cifuentes et al. significantly extend this bench-
mark, resulting in 181 bugs that are sampled from four categories,
e.g., buffer overflows. They use the benchmark to compare 4 bug
detectors using an automatic, line-based matching to measure recall.
Future work could apply our semi-manual methodology to their
bug collection to study whether our results generalize to C pro-
grams. Rahman et al. compare the benefits of static bug detectors
and statistical bug prediction [31]. To evaluate whether an approach
would have detected a particular bug, their study compares the lines
flagged with warnings and the lines changed to fix a bug, which
roughly corresponds to the first step of our methodology and lacks
a manual validation whether a warning indeed points to the bug.
Johnson et al. conducted interviews with developers to understand
why static bug detectors are (not) used [11]. The study suggests that
better ways of presenting warnings to developers and integrating
bug detectors into the development workflow would increase the
usage of these tools.

Studies of Other Bug Detection Techniques. Other studies con-
sider bug detection techniques beyond static bug detectors, test
generation [2, 38]. One of these studies [38] also considers bugs

3https://github.com/sola-da/StaticBugCheckers

https://github.com/sola-da/StaticBugCheckers

ASE ’18, September 3-7, 2018, Montpellier, France

51 51

Andrew Habib and Michael Pradel

= Full match ===

Partial match
Mismatch ===

43

5 5 5 °
c @ < @ < @
€ S 33 32 € S € 32 > %
T 43 30 33 2 T 29 o T 43 a 25
= S = kS = ks
5 o 5 11 g 22 5 o 7
5 o7 8 27 24 P 8 s 5 27 8
£ 5 9 £ D 8 it 7 E ﬁ 6 6 E & E 11 7
= 8 3 = ! l:ls 3 Z | |3 i 2.&.1 11 3 | |3 y Z 2 s [,
e B=a s s s s = s &=] s i
Error Prone Infer SpotBugs Error Prone Infer SpotBugs Error Prone Infer SpotBugs Error Prone Infer SpotBugs Error Prone Infer SpotBugs Error Prone Infer SpotBugs
(a) Diff-based approach. (b) Fixed warnings-based approach. (c) Combined approach.

Figure 6: Manual inspection of candidate warnings and bugs from the two automatic matching approaches.

Diff-based
Fixed warnings-based

10

Error Prone Infer SpotBugs

Figure 7: Actual bugs found using the two different auto-
matic matching techniques.

in Defects4] and finds that most test generators detect less than
20% of these bugs. Another study focuses on manual bug detection
and compares the effectiveness of code reading, functional testing,
and structural testing [44]. Finally, Legunsen et al. study to what
extent checking API specifications via runtime monitoring reveals
bugs. All these studies are complementary to ours, as we focus on
static bug detectors. Future work could study how well different
bug finding techniques complement each other.

Studies of Bugs and Bug Fixes. An important step toward improv-
ing bug detection is to understand real-world bugs. To this end,
studies have considered several kinds of bugs, including bugs in the
Linux kernel [8], concurrency bugs [19], and correctness [23] and
performance bugs [37] in JavaScript. Pan et al. study bug fixes and
identify recurring, syntactical patterns [25]. Work by Ray et al. re-
ports that statistical language models trained on source code show
buggy code to have higher entropy than fixed code [32], which can
help static bug detectors to prioritize their warnings.

Static Bug Detectors and Real-World Deployments. The lint
tool [12], originally presented in 1978, is one of the pioneers on
static bug detection. Since then, static bug detection has received
significant attention by researchers, including work on finding
API misuses [22, 30, 43], name-based bug detection [29], security
bugs [6], finding violations of inferred programmer beliefs [9] and
other kinds of anomaly detection [16], bug detection based on statis-
tical language models [42], and on detecting performance bugs [27].
Several static bug detection approaches have been adopted by in-
dustry. Bessey et al. report their experiences from commercializing
static bug detectors [5]. Ayewah et al. share lessons learned from
applying FindBugs, the predecessor of the SpotBugs tool considered
in our study, at Google [3, 4]. A recent paper describes the success
of deploying a name-based static checker [33]. Since many bug

325

detectors suffer from a large number of warnings, some of which
are false positives, an important question is which warnings to
inspect first. Work on prioritizing analysis warnings addresses this
question based on the frequency of true and false positives [15],
the version history of a program [14], and statistical models based
on features of warnings and code [35].

5 CONCLUSION

This paper investigates how many of all bugs can be found by cur-
rent static bug detectors. To address this question, we study a set
of 594 real-world Java bugs and three widely used bug detection
tools. The core of our study is a novel methodology to assess the
recall of bug detectors, which identifies detected bugs through a
combination of automatic, line-based matching and manual valida-
tion of candidates for detected bugs. The main findings of the study
include the following: (i) Static bug detectors find a non-negligible
number, 27, of real-world bugs, showing that static bug detectors
are certainly worthwhile and developers should use them during
development. (ii) Different bug detectors complement each other
in the sense that they detect different subsets of the studied bugs.
Users of static bug detectors may want to run more than one tool.
(iii) The large majority (95.5%) of the studied bugs are not detected
by the studied tools, showing that there is ample of room for im-
proving the current state-of-the-art. (iv) Many of the missed bugs
are due to domain-specific problems instead of generic bug pat-
terns, while some currently missed bugs could be found with more
powerful variants of existing checks.

Overall, we conclude that future work should focus not only
on reducing false positives, as highlighted by previous studies,
but also on detecting a larger fraction of all real-world bugs, e.g.,
by considering a larger variety of bug patterns and by searching
domain-specific bugs. Beyond these findings, which are relevant to
users and creators of static bug detectors, our results can serve as
a basis for a future study on comparing static analysis with other
bug detection techniques, such as manual and automated testing.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Julia Lawall for their valuable
comments. This work was supported in part by the German Research Foun-
dation within the Emmy Noether project ConcSys and the Perf4]S project,
by the German Federal Ministry of Education and Research and by the
Hessian Ministry of Science and the Arts within CRISP, and by the Hessian
LOEWE initiative within the Software-Factory 4.0 project.

How Many of All Bugs Do We Find?

REFERENCES

(1]

[10]

[11]

[12]
[13]

[14]

[20

[21]

[22

[23

Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan.
2012. Building Useful Program Analysis Tools Using an Extensible Java Com-
piler. In 12th IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2012, Riva del Garda, Italy, September 23-24, 2012. 14-23.
Mohammad Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and
Janis Benefelds. 2017. An Industrial Evaluation of Unit Test Generation: Finding
Real Faults in a Financial Application. In 39th IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice Track, ICSE-SEIP 2017,
Buenos Aires, Argentina, May 20-28, 2017. 263-272.

Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(2008), 22-29.

Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs fixit. In
Proceedings of the Nineteenth International Symposium on Software Testing and
Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010. 241-252.

Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. 2010. A
few billion lines of code later: Using static analysis to find bugs in the real world.
Commun. ACM 53, 2 (2010), 66-75.

Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson R. Engler, Ranjit Jhala,
and Deian Stefan. 2017. Finding and Preventing Bugs in JavaScript Bindings. In
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017. 559-578.

Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving fast with software verification. In
NASA Formal Methods Symposium. Springer, 3-11.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R. Engler.
2001. An Empirical Study of Operating System Errors. In Symposium on Operating
Systems Principles (SOSP). 73-88. http://doi.acm.org/10.1145/502034.502042
Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Symposium on Operating Systems Principles (SOSP). ACM, 57—
72.

David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Compan-
ion to the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 132-136.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 672-681.

S. C. Johnson. 1978. Lint, a C Program Checker.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 654-665.

Sunghun Kim and Michael D. Ernst. 2007. Which warnings should I fix first?.
In European Software Engineering Conference and Symposium on Foundations of
Software Engineering (ESEC/FSE). ACM, 45-54.

Ted Kremenek and Dawson R. Engler. 2003. Z-Ranking: Using Statistical Anal-
ysis to Counter the Impact of Static Analysis Approximations. In International
Symposium on Static Analysis (SAS). Springer, 295-315.

Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: Mining More Bugs by Reducing Noise Interference. In ICSE.

J. L. Lions. 1996. ARIANE 5 Flight 501 Failure. Report by the Inquiry Board.
European Space Agency.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In Workshop on the
Evaluation of Software Defect Detection Tools.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 329-339.

Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: A large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936-1964.
Steve McConnell. 2004. Code Complete: A Practical Handbook of Software Con-
struction, Second Edition. Microsoft Press.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based mining of multiple object usage patterns. In
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 383-392.

Frolin S. Ocariza Jr., Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013.
An Empirical Study of Client-Side JavaScript Bugs. In Symposium on Empirical
Software Engineering and Measurement (ESEM). 55—64.

ASE ’18, September 3-7, 2018, Montpellier, France

[24] Nicolas Palix, Gaél Thomas 0001, Suman Saha, Christophe Calves, Julia L. Lawall,

and Gilles Muller. 2011. Faults in linux: ten years later. In Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
ACM, 305-318.

Kai Pan, Sunghun Kim, and E. James Whitehead Jr. 2009. Toward an understand-
ing of bug fix patterns. Empirical Software Engineering 14, 3 (2009), 286-315.
Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Software Engineering (ICSE), 2017 IEEE/ACM 39th International
Conference on. IEEE, 609-620.

Jacques A. Pienaar and Robert Hundt. 2013. JSWhiz: Static analysis for JavaScript
memory leaks. In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization, CGO 2013, Shenzhen, China, February 23-27,
2013.11:1-11:11.

Kevin Poulsen. 2004. Software Bug Contributed to Blackout. SecurityFocus.
Michael Pradel and Thomas R. Gross. 2011. Detecting anomalies in the order of
equally-typed method arguments. In International Symposium on Software Testing
and Analysis (ISSTA). 232-242.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012.
Statically Checking API Protocol Conformance with Mined Multi-Object Specifi-
cations. In International Conference on Software Engineering (ICSE). 925-935.
Foyzur Rahman, Sameer Khatri, Earl T Barr, and Premkumar Devanbu. 2014.
Comparing static bug finders and statistical prediction. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 424-434.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar T. Devanbu. 2016. On the "naturalness” of buggy code.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 428-439.

Andrew Rice, Edward Aftandilian, Ciera Jaspan, Emily Johnston, Michael Pradel,
and Yulissa Arroyo-Paredes. 2017. Detecting Argument Selection Defects. In
OOPSLA.

Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. 2004. A Comparison of
Bug Finding Tools for Java. In International Symposium on Software Reliability
Engineering (ISSRE). IEEE Computer Society, 245-256.

Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. 2008. Predicting accurate and actionable static analysis warn-
ings: an experimental approach. In International Conference on Software Engineer-
ing (ICSE). 341-350.

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15).
IEEE Press, Piscataway, NJ, USA, 598-608. http://dl.acm.org/citation.cfm?id=
2818754.2818828

Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In International Conference on Software
Engineering (ICSE). 61-72.

Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges (T). In 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,
USA, November 9-13, 2015. 201-211.

Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2012. To what extent could we detect field defects? an empirical
study of false negatives in static bug finding tools. In Conference on Automated
Software Engineering (ASE). ACM, 50-59.

Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2015. To what extent could we detect field defects? An extended
empirical study of false negatives in static bug-finding tools. Autom. Softw. Eng.
22, 4 (2015), 561-602.

Stefan Wagner, Jan Jirjens, Claudia Koller, and Peter Trischberger. 2005. Com-
paring Bug Finding Tools with Reviews and Tests. In International Conference on
Testing of Communicating Systems (TestCom). Springer, 40-55.

Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016. 708-719.

Andrzej Wasylkowski and Andreas Zeller. 2009. Mining Temporal Specifications
from Object Usage. In International Conference on Automated Software Engineering
(ASE). IEEE, 295-306.

Murray Wood, Marc Roper, Andrew Brooks, and James Miller. 1997. Comparing
and Combining Software Defect Detection Techniques: A Replicated Empirical
Study. In Software Engineering - ESEC/FSE *97, 6th European Software Engineering
Conference Held Jointly with the 5th ACM SIGSOFT Symposium on Foundations
of Software Engineering, Zurich, Switzerland, September 22-25, 1997, Proceedings.
262-2717.

Jiang Zheng, Laurie A. Williams, Nachiappan Nagappan, Will Snipes, John P.
Hudepohl, and Mladen A. Vouk. 2006. On the Value of Static Analysis for Fault
Detection in Software. IEEE Trans. Software Eng. 32, 4 (2006), 240-253.

http://doi.acm.org/10.1145/502034.502042
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828

ASE ’18, September 3-7, 2018, Montpellier, France Andrew Habib and Michael Pradel

[46] Michael Zhivich and Robert K. Cunningham. 2009. The Real Cost of Software
Errors. IEEE Security & Privacy 7, 2 (2009), 87-90.

327

	Abstract
	1 Introduction
	2 Methodology
	2.1 Real-World Bugs
	2.2 Static Bug Detectors
	2.3 Experimental Procedure
	2.4 Threats to Validity

	3 Experimental Results
	3.1 Properties of the Studied Bugs
	3.2 Warnings Reported by the Bug Detectors
	3.3 Candidates for Detected Bugs
	3.4 Validated Detected Bugs
	3.5 Comparison of Bug Detectors
	3.6 Reasons for Missed Bugs
	3.7 Assessment of Methodologies

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

