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ABSTRACT
Thread-safe classes are pervasive in concurrent, object-oriented
software. However, many classes lack documentation regarding
their safety guarantees under multi-threaded usage. This lack of
documentation forces developers who use a class in a concurrent
program to either carefully inspect the implementation of the class,
to conservatively synchronize all accesses to it, or to optimistically
assume that the class is thread-safe. To overcome the lack of doc-
umentation, we present TSFinder, an approach to automatically
classify classes as supposedly thread-safe or thread-unsafe. The
key idea is to combine a lightweight static analysis that extracts
a graph representation from classes with a graph-based classifier.
After training the classifier with classes known to be thread-safe
and thread-unsafe, it achieves an accuracy of 94.5% on previously
unseen classes, enabling the approach to infer thread safety docu-
mentationwith high confidence. The classifier takes about 3 seconds
per class, i.e., it is efficient enough to infer documentation for many
classes.
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1 INTRODUCTION
Thread-safe classes are pervasive. They are the corner stone of con-
current, object-oriented programs. A thread-safe class encapsulates
all necessary synchronization required to behave correctly when
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its instances are accessed by multiple client threads concurrently,
without additional synchronization from the calling side. Devel-
opers of multi-threaded object-oriented programs often rely on
thread-safe classes to cast away the burden of ensuring the thread
safety of their applications.

Unfortunately, it is not always clear to a developer who uses
a class whether the class is thread-safe or not. The reason is that
many classes do not provide any or only partial information about
their thread safety. Instead, it is common to find questions on
web forums, such as Stack Overflow, about the thread safety of
a specific class. For example, one developer asked about the thread
safety of the widely used javax.xml.parsers.DocumentBuilder
class.1 Another developer questioned the thread safety of the crucial
JDK class java.util.Random.2 Developers often complain about
the lack of thread-safety documentation. For instance, the devel-
oper who reported that earlier versions of JDK format classes are
not thread-safe notes that: “Not being thread-safe is a significant
limitation on a class, with potentially dire results, and not doc-
umenting the classes as such is dangerous.”3 Eventually, the ac-
cepted fix was to explicitly state in the documentation that JDK
format classes are not thread-safe. Another developer comments
on the thread-safety of java.beans.PropertyChangeSupport and
java.beans.VetoableChangeSupport and writes: “[...] However,
the documentation does not indicate either their thread-safety or
lack thereof. In keeping with the current documentation standards,
this point should be indicated in the class documentation.”4

The lack of adequate documentation about the thread safety of
classes has several negative consequences. First, a developer may
solve the problem by manually analyzing the classes she wants to
reuse. However, this approach spoils some of the benefits of reusing
an existing class because it forces the developer to inspect and
understand the class implementation, breaking the encapsulation
provided by the class API. Second, a developer may conservatively
assume that a class is not thread-safe and carefully synchronize all
concurrent accesses to the class to avoid concurrency bugs, such
as data races, atomicity violations, and deadlocks. However, if the
class is already thread-safe, this additional synchronization imposes
additional runtime overhead and may unnecessarily limit the level
of parallelism achieved by the program. Finally, a developer may
optimistically assume a class to be thread-safe. However, if the class
turns out to not provide this guarantee, the program may suffer
from concurrency bugs, e.g., [1–3], which often become apparent

1https://www.stackoverflow.com/questions/56737
2https://www.stackoverflow.com/questions/5819638
3https://bugs.java.com/view_bug.do?bug_id=4264153
4https://bugs.java.com/view_bug.do?bug_id=5026703
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only under specific interleavings and therefore may easily remain
unnoticed during testing. In all three scenarios, the developer takes
a poorly guided decision that relies on her limited understanding
of an implementation or on luck.

This paper addresses the problem of missing thread safety docu-
mentation by automatically classifying a given class as thread-safe
or thread-unsafe. Our approach, called TSFinder, is a statistical,
graph-based learning technique that learns from a relatively small
set of classes known to be thread-safe or thread-unsafe the distin-
guishing properties of these two kinds of classes. The approach is
enabled by two contributions. First, TSFinder uses a lightweight
static analysis of the source code of the class to extract information
and represent this information in a graph. Second, we use graph-
based classification techniques – graph kernels [65] combined with
support vector machine (SVM) [56] to learn a classifier for previ-
ously unseen classes. TSFinder helps developers assess the thread
safety of an otherwise undocumented class, enabling a developer
to take an informed decision on whether and how to use the class.

Our work is complementary to techniques for finding concur-
rency bugs, which has been extensively studied in the past [7, 13,
18, 19, 35, 36, 42, 55, 68, 71, 78], in particular in the context of
thread-safe classes [14, 41, 44, 51–53, 61]. These approaches con-
sider supposedly thread-safe classes and try to find corner cases in
their implementation that a developer has missed. Instead, TSFinder
addresses classes for which it is unknown whether the class is even
supposed to be thread-safe and tries to answer that question in
an automatic way. Applying existing bug detection techniques to
answer this question would likely result in missing thread-unsafe
classes (by testing-based approaches) or missing thread-safe classes
(by sound static analyses). Our work also relates to existing work on
inferring [5, 26] and improving [27, 37, 63, 81] documentation. We
extend this stream of work to concurrency-related documentation,
which has not yet been studied.

Our evaluation consists of two parts. First, we validate our hy-
pothesis that existing classes lack thread safety documentation
by systematically searching all 179,239 classes in the Qualitas cor-
pus [60]. We find that the vast majority of classes fails to document
whether it is thread-safe or not. Second, we evaluate our classifier
with 230 training classes that were manually labeled as thread-safe
or thread-unsafe. We find that 94.5% of TSFinder’s classification
decisions are correct. In particular, the precision and recall of iden-
tifying thread-safe classes are 94.9% and 94.0%, respectively. On
average, adding documentation to a new class takes about 3 sec-
onds. These results show that the approach is accurate enough to
significantly improve over guessing whether a class is thread-safe
and efficient enough to scale to large sets of classes.

In summary, this paper makes the following contributions:

• A systematic study of thread-safety documentation in real-
world Java classes showing the lack of such documentation.

• The first automated classifier to distinguish supposedly
thread-safe and thread-unsafe classes, an understudied prob-
lem that addresses the lack of thread safety documentation.

• A novel combination of static analysis and graph-based clas-
sification that accurately and efficiently predicts the thread
safety of a class.

Labeled 

training classes
Extracted graphs Graph kernel

matrix
SVM model

New class Extracted graphs Feature vector

Thread-safe

Not thread-safe

Training

Classification

Figure 1: Overview of TSFinder: Inferring thread safety us-
ing static analysis and graph kernels.

In Section 2, we give an overview of TSFinder. Sections 3 and 4
fill in the details. Sections 5 and 6 summarize the implementation
and evaluation. Sections 7 and 8 discuss the limitations of TSFinder
and and related work. Finally, in Section 9 we conclude the paper
and discuss future work.

2 CHALLENGES AND OVERVIEW
The goal of this work is to automatically document classes as sup-
posedly thread-safe or thread-unsafe. The approach should be ef-
ficient enough to scale to hundreds of classes, e.g., all classes in a
3rd-party library, and accurate enough to provide reliable documen-
tation. Achieving this goal is challenging for several reasons. First,
there are different approaches for ensuring that a class is thread-
safe, e.g., making the class immutable, using language-level syn-
chronization primitives, building on other thread-safe classes, using
lock-free data structures, and combinations of these approaches.
Because of this diversity, a simple check, e.g., for whether a class has
synchronized methods, is insufficient to determine thread safety.
Second, the thread safety of a class may depend on other classes.
In particular, inheriting from a thread-unsafe class may compro-
mise the thread safety of the child class. Third, extensive reasoning
about concurrent behavior, e.g., to reason about different inter-
leavings [66], can easily require large amounts of computational
resources, which conflicts with our scalability goal.

Figure 1 provides an overview of our approach to infer thread
safety documentation. The approach consists of a training phase,
where it learns from a set of classes known to be thread-safe and
thread-unsafe, and a prediction phase, where it infers thread safety
documentation for a previously unseen class. Both phases combine
a lightweight static analysis that extracts graph representations of
classes with a graph-based classifier. The graph-based classification
converts graphs into vectors by computing the similarity between
graphs of a to-be-classified class and graphs in the trained model.
These vectors are then classified using a model based on a support
vector machine (SVM). The following illustrates the main steps of
TSFinder using the Java class in Figure 2a.

Extracting field-focused graphs. To apply machine learning to the
thread safety classification problem, we need to represent classes
in a suitable form. Our approach exploits the structured nature of
programs by representing a class as a set of graphs. Since multi-
threading is mainly about sharing and allowing multiple concurrent
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public class Sequence {

private volatile int seq;

private int MAX;

public Sequence(int m) {

MAX = m;

reset();

}

public synchronized

int next() {

if(!isMax())

return seq++;

return -1;

}

boolean isMax() {

return seq > MAX;

}

void reset() {

seq = 0;

}

}

(a) Java class.
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(b) Extracted graphs. The graphs from left to right correspond to fields seq, MAX, and the pair (seq,
MAX), respectively. The identifier names, in italic and blue font, are not used for classification, but
shown only for illustration.

д1 д2 . . . д4860 д1 д2 . . . д4860 д1 д2 . . . д4860[
0.350 0.436 . . . 0.573

] [
0.355 0.536 . . . 0.584

] [
0.392 0.588 . . . 0.567

]
(c) Vectors of the three graphs in Figure 2b. The trained model has 4,860 graphs in it.

min(д1 ) max(д1 ) avд(д1 ) min(д2 ) max(д2 ) avд(д2 ) . . . avд(д4860 )[
0.350 0.392 0.366 0.436 0.588 0.520 . . . 0.575

]
(d) Class vector of the entire class.

Figure 2: A Java class and graphs extracted from it by our analysis. TSFinder predicts this class to be thread-safe.

accesses to resources, the graphs represent shared resources and
how these resources are accessed.

For the example class, Figure 2b shows the graphs extracted by
TSFinder. Each graph focuses on a single field or a combination of
fields of the class. The graphs represent read and write accesses
to the fields, call relationships between methods, and the use of
synchronization primitives, such as the synchronized keyword.
For example, the first graph in Figure 2b which focuses on the seq
field shows that the field is read by the isMax method, written by
the reset method, and both read and written by the next method.
Furthermore, the graph represents the call relationship between
next and isMax.

Computing graph kernels. After extracting a set of graphs for
each class under analysis, TSFinder checks for each graph whether
it is similar to graphs that come from thread-safe or from thread-
unsafe classes. To this end, we use the graph kernels [65], i.e., math-
ematical functions that compute the pairwise similarity of graphs.
TSFinder computes the similarity of each graph of a class and the
graphs of classes known to be thread-safe or thread-unsafe. The
similarity values yield a vector of numbers, called the graph vector
or embedding. For the running example, the approach computes
three graph vectors, one for each graph, as illustrated in Figure 2c.

Learning a classification model. To train a classifier that can dis-
tinguish thread-safe classes from thread-unsafe classes, TSFinder
trains a model using a corpus of classes with known thread safety.
The approach combines all graph vectors of a class into a single

vector, called class vector, that represents the entire class (Figure 2d)
along with a label denoting whether the class is thread-safe or not.
Finally, the labeled class vectors are used to train a classification
model that distinguishes between the two kinds of classes.

Classifying a new class. Given a new class, our approach extracts
graphs and computes a class vector as in the previous step. Based on
the trained model, TSFinder then classifies the class by querying the
model with this vector. For Figure 2, TSFinder infers that the class is
thread-safe and adds this information to the class documentation.

3 EXTRACTING FIELD-FOCUSED GRAPHS
The first step of our approach is to extract graphs from classes via
a lightweight static analysis. This section explains the properties
extracted by the static analysis (§ 3.1) and how we summarize these
properties into graphs (§ 3.2).

3.1 Static Analysis
TSFinder performs a lightweight static analysis that extracts var-
ious properties of a class under analysis. We focus on two kinds
of properties: unary properties, which describe program elements
of the class, and binary properties, which describe relationships be-
tween program elements and properties of program elements. We
choose properties relevant for concurrency, e.g., memory locations,
accesses to memory locations, and memory visibility guarantees of
these accesses.
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3.1.1 Unary Properties. The static analysis extracts the follow-
ing unary properties from each class:

Definition 3.1 (Unary properties). Let C be the class under analy-
sis. LetCf be the set of fields,Cm be the set of methods, andCconst
be the set of class constructors and static constructors defined by
C . The set of unary properties of C is:

Cunary = Cf ∪Cm ∪Cconst

For example, our approach extracts from the class in Figure 2a
the following set of unary properties:

Cf = {seq,MAX },Cm = {next(), isMax(), reset()}

and
Cconst = {Sequence(int)}

3.1.2 Binary Properties. To capture relationships between pro-
gram elements and properties of program elements, the analysis
extracts several binary properties:

Definition 3.2 (Binary properties). LetC be the class under inspec-
tion, andCconst ,Cm ,Cf as defined above. We define the following
binary relations Rels:

• Calls : {Cconst ∪Cm } × {Cconst ∪Cm }

• Reads : {Cconst ∪Cm } × {Cf }
• Writes : {Cconst ∪Cm } × {Cf }
• Sync : {Cm } × {this, lock}
• Mod : {Cconst ∪ Cm ∪ Cf } × {public,protected,private,
static,volatile, f inal}

The set of binary properties of C is:

Cbinary = Calls ∪ Reads ∪Writes ∪ Sync ∪Mod

The binary properties capture a rich set of relations relevant to
our thread safety prediction task, e.g., whether a method is public,
what fields a method reads and writes, and whether a method is
synchronized. The set {this, lock} represents objects that the class
uses as locks, where this represents a self-reference to the current
instance and lock represents any other object.

For our running example in Figure 2a, the binary properties
include that the public class constructor Sequence(int) writes to
the field MAX, that the method next() reads and writes the field seq,
and that the method next()is synchronized on this. Note that
the absence of properties also conveys information. For example,
the absence of a binary relation (MAX ,volatile) ∈ Mod indicates
that the MAX field is non-volatile.

3.1.3 Flattening the Class Hierarchy. The thread safety of a class
not only depends on its own implementation, but also on the imple-
mentation of its superclasses. E.g., a class may inherit a method that
does not synchronize data accesses and therefore become thread-
unsafe, even though the subclass alone would be thread-safe [45].
Our static analysis addresses this challenge by flattening the class
hierarchy. Specifically, the analysis recursively merges the unary
and binary properties of each class with those of its superclass until
reaching the root of the class hierarchy. The merging follows the
inheritance rules of the Java language. For example, the properties
related to a superclass method that is not overridden by the subclass
are merged into the properties of the subclass.

3.2 Field-focused Graphs
Given the properties extracted by the static analysis, TSFinder
summarizes this information into a set of graphs for each class. Tra-
ditionally, programs have been represented by a variety of graphs
suited for different purposes. For example, abstract syntax trees,
control-flow graphs, and program dependency graphs have been
used to analyze the syntax, control flow, and data flow of programs.
The following presents two kinds of graphs designed specifically to
reason about concurrency-related properties of classes. The basic
idea is to summarize in each graph how clients of the class may
access a field or a combination of fields of the class. We call these
graph representations field-focused graphs.

Before presenting field-focused graphs, we define a single graph
per class, which conflates all properties known about this class:

Definition 3.3 (Class graph). Given a class C , let Cunary and
Cbinary be the unary and binary properties of C , respectively. The
class graph of C is a directed multi-graph дC = (VC ,EC ), where
VC = VRels ∪ Cunary ∪ {this, lock,public,protected,private,
static,volatile, f inal} are vertices that represent program elements
and properties of them, and VRels = {Calls,Reads,Writes, Sync,
Mod} are special nodes that represent the different relations in
Cbinary . Each special node is labeled with the name of the relation,
i.e., withCalls , Reads ,Writes , Sync , orMod and is connected to its
binary operands by the set EC of directed unlabeled edges.

One possible approach would be to predict the thread safety of
a class based on its class graph. However, most class graphs are
dissimilar from most other class graphs, independently of whether
the classes are thread-safe, because classes and therefore also their
class graphs are very diverse. An important insight of our work is
that this problem can be addressed by deriving smaller graphs from
the class graph, so that each small graph captures a coherent subset
of concurrency-related properties. The intuition is that these smaller
graphs capture recurring implementation patterns of thread-safe
and thread-unsafe classes, enabling TSFinder to learn to distinguish
them.

TSFinder derives smaller graphs from the class graph by focusing
on a single field or a combination of fields:

Definition 3.4 (Field-focused graph). Given a non-empty sub-
set F ⊆ Cf of the fields of a class C and a class graph дC
where дC = (VC ,EC ), the field-focused graph дF = (VF ,EF )
contains all vertices reachable from F , i.e., VF = {v | ∃ vf ∈

F s.tt. reachableдC (vf ,v) and reachableдC (v,vf )}, and contains
all edges connecting these vertices.

For a directed graph д = (V ,E) where u and v ∈ V ,

reachableд(u,v) ⇐⇒ there exists a directed edge from u to v .

If the set F contains a single field, then the field-focused graph
captures all program elements related to this field, as well as the
relations between them. Such a single-field graph summarizes how
clients of the class may access the field and to what extent these
accesses are protected by synchronization.

For the example in Figure 2a, TSFinder extracts two graphs that
focus on single fields, shown as the first two graphs in Figure 2b.
They focus on the fields seq and MAX, respectively.
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Some characteristics of thread-safe classes cannot be captured
by single-field graphs. For example, a thread-safe class may update
two semantically related fields together and use a single lock or a
synchronized method to protect the access to these fields. TSFinder
captures such behavior by also considering sets F of multiple fields,
which yields multi-field graphs. Specifically, the approach considers
all pairs of fields for which there exists at least one method that
reads or writes from both fields. To bound the overall number of
graphs extracted per class, we focus on field-focused graphs with
|F | ≤ 2, i.e., single fields or pairs of fields.

As an example of a multi-field graph, consider the third graph
in Figure 2b. Because the class method isMax() reads both fields,
the approach extracts a graph that captures both fields together.

Intuitively, the reason why field-focused graphs are effective
at characterizing the thread safety of a class is that they capture
various patterns for making a class thread-safe. Whether a class
is thread-safe depends on how the class accesses its internal state,
i.e., its fields, and in what ways these accesses are protected by
synchronization. Field-focused graphs capture the various ways to
implement thread safety, e.g., using synchronized methods, volatile
fields, or by making a class immutable. By capturing these im-
plementation patterns, the graphs enable TSFinder to determine
whether a class is thread-safe.

Graph canonicalization. The final step of extracting field-focused
graphs from classes is to canonicalize the graphs. The motivation
is that, to learn recurring patterns in implementations of thread-
safe and thread-unsafe classes, the extracted graphs need to be
comparable across different classes. In particular, they should not
contain identifier names, such as method and field names, as these
vary across different classes and projects. Therefore, our approach
renames each node that represents a method to m, while two special
node names init and clinit are reserved for class constructors
and static constructors, respectively. Similarly, all fields are renamed
to f.

4 CLASSIFYING CLASSES
Classifying graphs is a classical problem in several domains such
as bio- and chemo-informatics [10, 47, 59], image analysis [25], and
web and social network analysis [67]. Traditional approaches to
this problem [65] use a so-called kernel method [56], a function
to compute the similarity between two graphs. The pairwise sim-
ilarities between graphs are then used as vector embeddings to
represent the graphs for classification.

We adopt a variant of this approach to our problem of classifying
thread-safe classes. TSFinder first builds several graphs per class
(§ 3.2). It then uses the kernel method through a graph kernel func-
tion to generate vectors (embeddings) for graphs (§ 4.2.1). Instead
of training a machine learning model on several individual graphs
from each class, we combine embeddings of graphs extracted from
the same class into one single embedding per class for the ma-
chine learning model to learn (§ 4.2.2). This step allows TSFinder to
classify thread-safe classes using all generated graphs from a class.

Based on the field-focused graphs extracted for each class, TS-
Finder learns how to classify classes into supposedly thread-safe
and thread-unsafe classes. To this end, the approach combines a
graph kernel, which computes the similarity of two graphs, with

a SVM, which classifies each class based on the similarity of its
graphs to other graphs from classes known to be thread-safe or not.

The basic idea is to perform three steps:
(1) Given a class, compare its graphs to graphs of classes known

to be thread-safe or thread-unsafe. For each pair of graphs,
compute a similarity score and summarize all scores into a
vector per graph.

(2) Combine all graph vectors of a class into one single class
vector that summarizes the similarity of graphs extracted
from the class to graphs in the trained model.

(3) Classify a class by querying a vector-based binary classi-
fier using the resulting class vector. The classifier has been
trained with the class vectors of the classes with known
thread safety.

The remainder of this section presents these steps in detail.

4.1 Background: Graph Kernels
Checking whether two graphs are isomorphic is a computationally
hard problem for which no polynomial-time algorithm is known. In
contrast, graph kernels offer an efficient alternative that compares
graph substructures in polynomial time. In essence, a graph kernel is
a function that takes two graphs and yields a real-valued similarity
score. Given a list of graphsд1, ..,дn and a kernelk , one can compute
a matrix K = (k(дi ,дj ))i, j , 1 ≤ i, j ≤ n, that contains all pairwise
similarity scores of the graphs. This matrix, called the kernel matrix,
is symmetric and positive-definite.

In this work, we build upon a fast, scalable, state of the art kernel,
the Weisfeiler-Lehman (WL) graph kernel [58]. It is based on the
Weisfeiler-Lehman graph isomorphism test [74], which augments
each labeled node by the sorted set of its direct neighbors and
compresses this augmented label into a new label. This step is
repeated until the sets of node labels of the two graphs are different
or until reaching a maximum number of iterations h. Given a graph
д, we refer to the sequence of graphs obtained by this augmentation
and compression step as д0,д1, ..,дh , where д0 = д and дh is the
maximally augmented and compressed graph. We call this sequence
of graphs theWL sequence of д.

Given two graphs and their WL sequences, we compute the
graph kernel as follows:

Definition 4.1 (Weisfeiler-Lehman kernel). The graph kernel of д
and д′ is

k(д,д′) = ksub (д0,д
′
0) + ksub (д1,д

′
1) + · · · + ksub (дh ,д

′
h )

The function ksub is a subtree kernel function.

Definition 4.2 (Weisfeiler-Lehman subtree kernel). The subtree
graph kernel of д and д′ is

ksub (д,д
′) = ⟨ϕ(д),ϕ(д′)⟩

where the notation ⟨., .⟩ denotes the inner product of two vectors.

The ϕ function vectorizes a labeled graph by counting the origi-
nal and compressed node labels of the graphs in the WL sequences
of д and д′. Specifically, let Σi be the set of node labels that occur at
least once in д or д′ at the end of the i-th iteration of the algorithm,
and let ci (д,σi j ) be the number of occurrences of the label σi j ∈ Σi
in the graph д. Based on the counter ci , we compute ϕ as follows:
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ϕ(д) =
(
c0(д,σ01), . . . , c0(д,σ0 |Σ0 |), . . . ,

ch (д,σh1), . . . , ch (д,σh |Σh |)
)

4.2 Training
The goal of the training step of TSFinder is to create a binary
classification model that predicts whether a given class is thread-
safe or thread-unsafe. We use a supervised learning technique and
therefore require training data. As training data, we use two sets
of classes CTS and CT̃ S , which consist of known thread-safe and
known thread-unsafe classes, respectively. For each of these classes,
the static analysis (§ 3) extracts a set of graphs.

4.2.1 Graphs Vectors. TSFinder first computes a vector repre-
sentation of each graph based on the graph kernel function in § 4.1.
Intuitively, the vector characterizes a graph by summarizing how
similar it is to other, known graphs in the training data.

More technically, the approach computes the vector representa-
tion of a graph in three steps:

(1) Fix the order of all graphs in GCTS∪CT̃ S to obtain a list of
graphs д1, ..,дn . The specific order does not matter, as long
as it remains fixed.

(2) Compute the kernel matrix of all graphs K = (k(дi ,дj ))i, j
for 1 ≤ i, j ≤ n.

(3) For each graph дi , the i-th row of K is the vector representa-
tion of д, called graph vector.

4.2.2 Combining Class Graphs. Given the graphs vectors of a
class, we combine these vectors into a single class vector. Intuitively,
the class vector should summarize to what extent the individual
graphs of a class resemble the graphs of classes in the training data.
If a class has graphs that are very similar to graphs that typically
occur in thread-safe classes, then the class is more likely to thread-
safe. Likewise, a class with graphs that mostly resemble graphs
from thread-unsafe classes is more likely to also be thread-unsafe.
To encode this intuition, we create a class vector by computing the
minimum, maximum, and average similarity of all the graphs of
the class against all graphs extracted from the training classes.

Let n = |GCTS∪CT̃ S | be the total number of graphs extracted
from all classes in the training data. For a specific class C , let GC

be the set of all graphs TSFinder extracted fromC andm = |GC | be
the total number of these graphs. For each graph дi ∈ GC where
1 < i < m, let f jдi where 1 < j < n be the jth feature of graph дi of
the class C . Our approach computes the class vector by calculating
∀j ∈ 1, . . . ,n:

min(f
j
дi ∀i ∈ 1, . . . ,m),

max(f
j
дi ∀i ∈ 1, . . . ,m),

mean(f
j
дi ∀i ∈ 1, . . . ,m)

and concatenating these n ∗ 3 values into a single vector.
For example, the class vector in Figure 2d has 3*4860=14580

elements. The first three elements are the minimum, maximum,
and mean similarity of the graphs in Figure 2b compared to the
first graph in the list of graphs extracted from the training classes.
The next three elements are the minimum, maximum, and mean

similarity of the graphs in Figure 2b compared to the second graph
extracted from the training classes, . . . etc.

4.2.3 Classifier. Given the class vectors and their corresponding
labels l1, .., ln that indicate whether a class c is from CTS or from
CT̃ S , we finally feed the labeled vectors into a traditional vector-
based classification algorithm. By default, TSFinder uses a SVM for
learning the classifier. Our evaluation also considers alternative
algorithms.

4.3 Classifying a New Class
Once TSFinder has learned a model, we use it to predict the thread
safety of a new class. Let Cnew be the new class for which we
wish to infer its supposed behavior regarding thread safety. The
approach computes a class vector of Cnew in the same way as for
training. At first, TSFinder extracts field-focused graphs fromCnew ,
which yields a set GCnew of graphs. For each graph д ∈ GCnew the
approach computes the graph vector of д by computing its graph
kernel against all graphs in our training data:

vec(д) = (k(д,дj ))1j , j = 1, 2, . . . ,n

where дj ∈ GCTS∪CT̃ S is the set of graphs in the learned model and
n = |GCTS∪CT̃ S | is the total number of graphs in the model. Given
the set of graphs vectors, TSFinder combines these graphs into a
single class vector as described in § 4.2.2 and queries the trained
model to obtain a classification label for the class Cnew . The label
indicates whether the model predicts the class to be thread-safe or
thread-unsafe.

5 IMPLEMENTATION
We implement TSFinder into a fully automated tool to analyze Java
classes. The static analysis builds on the static analysis framework
Soot [64]. Given a class, either as source code or byte code, the
analysis extracts field-focused graphs by traversing all program
elements, by querying the call graph, and by analyzing definition-
use relationships of statements. We use the GraphML format [11]
to store graphs. To compute the WL graph kernel, we build on an
existing Python implementation [58]. The SVM model is imple-
mented on top of the Weka framework [21]. Our implementation
is available as open-source.5

6 EVALUATION
The evaluation is driven by four main research questions:

• RQ1: How many classes come with documentation about
their thread safety? (§ 6.1)

• RQ2: How effective is TSFinder in classifying classes as
thread-safe or thread-unsafe? (§ 6.2)

• RQ3: How efficient is TSFinder? (§ 6.3)
• RQ4: How does TSFinder compare to variants of the ap-
proach and to a simpler approach? (§ 6.4)

6.1 RQ1: Existing Thread Safety
Documentation

To better understand the current state-of-the art in documenting
thread safety, we systematically search all 179,239 classes from
5https://github.com/sola-da/TSFinder
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the Qualitas corpus for thread safety documentation. We focus on
documentation provided as part of the Javadoc comments of a class
and its members, and ignore any other documentation, e.g., on
project web sites or in books. Most real-world classes have Javadoc
documentation and it is a common software engineering practice
to document class-level properties, such as thread safety, there.

Our inspection proceeds in two steps. At first, we generate the
Javadoc HTML files for all classes and automatically search them
for keywords related to concurrency and thread safety. Specifically,
we search for “concu”, “thread”, “sync”, and “parallel”. We choose
these terms to overapproximate any relevant documentation. In
total, the search yields hits in 8,655 of the 179,239 classes.

As the second step, we manually analyze a random sample of 120
of the 8,655 classes. For each sampled class, we inspect the Javadoc
and search for any documentation related to the thread safety of
the class. Based on this inspection, we classify the class in one of
the following four categories.

Documented as thread-safe. The documentation explicitly spec-
ifies that the class is supposed to be thread-safe or this intention
can be clearly derived from the available information. Examples
include:

• The class-level documentation states “This class is thread-
safe”.

• The name of the class is SynchronousXYChart and the
project also contains a class XYChart, indicating that the
former is a thread-safe variant of the latter.

• The class-level documentation states “Mutex that allows
only one thread to proceed [while] other threads must wail
until the one finishes”. The semantics of a mutex implemen-
tation imply that the class is thread-safe because mutexes
are accessed concurrently without acquiring any additional
locks.

Documented as thread-unsafe. The documentation explicitly spec-
ifies that the class is not supposed to be thread-safe or this intention
can be clearly derived from the available information. Examples
include:

• The class-level documentation states “This class is not thread-
safe” or “not to be used without synchronization”.

• The class-level documentation states “We are not using any
synchronized so that this does not become a bottleneck”.

• The class-level documentation states “The class (..) shall be
used according to the Swing threading model”, which implies
that only the Swing thread may access instances of the class
and that the class is not thread-safe [77].

Documented as conditionally thread-safe. The documentation
specifies the class to be thread-safe under some condition. Examples
include:

• The class depends on another class and has the same thread
safety as this other class.

• All static methods of the class are thread-safe, whereas non-
static methods are not necessarily thread-safe.

No documentation on thread safety. The documentation does not
mention thread safety and we cannot derive from other available

Table 1: Existing thread safety documentation.

Documented as: Number Percentage

Thread-safe 11 9.2%
Not thread-safe 12 10.0%
Conditionally thread-safe 2 1.7%
No documentation 95 79.2%

Total inspected 120 100.0%

information whether the class is supposed to be thread-safe. Exam-
ples of documentation that matches our search terms but does not
document thread safety include:

• The class implements a graph data structure and its docu-
mentation says that it “permits parallel edges”.

• The method-level documentation specifies that an argument
or the return value of the method is supposed to be thread-
safe. While such a statement is about thread safety, it does
not specify this property for the current class.

Table 1 summarizes the results of this classification. We find
that most (79.2%) of the inspected classes do not document the
thread safety of the class, but hit our search terms for some other
reason. In the documented subset of classes, which sums up to 20.8%,
roughly the same number of classes is documented as thread-safe
and thread-unsafe, respectively.

Under the assumptions that our search terms cover all possible
thread safety documentation and that the 120 sampled classes are
representative for the entire population of classes in the corpus, we
can estimate the percentage of documented classes in the corpus:

% documented ∗ Search hits

Total classes
=

0.208 ∗ 8, 655
179, 239

= 1.004%

In summary, the vast majority of real-world Java classes do
not document whether they are thread-safe or not. Among
the few documented classes, 47.8% and 52.2% are documented
as thread-safe and thread-unsafe, respectively. We conclude
that the current state of thread safety documentation is poor
and will benefit from automatic inference of documentation.

6.2 RQ2: Effectiveness of TSFinder
6.2.1 Data Set and Graph Extraction. For the remaining evalua-

tion, we use a set of 230 classes gathered from JDK version 1.8.0_152.
These classes are documented to be either thread-safe or thread-
unsafe, providing a ground truth for our evaluation. Table 2 shows
the number fo fields, methods, and lines of code of these classes. In
total, the classes sum up to 74,313 lines of Java code. The last three
columns of Table 2 provide statistics about the graphs that TSFinder
extracts. On average, the static analysis extracts 21.1 graphs per
class, which yields a total of 4,860 graphs that the approach learns
from.

Although the number of thread-safe and thread-unsafe classes
is equal, the total number of extracted graphs from thread-unsafe
classes is about 1.4 the number of graphs extracted from thread-
safe classes. Since TSFinder uses the entire set of 4,860 graphs
to construct the class vector for any class, this imbalance does
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Table 2: Classes and extracted field-focused graphs used for training and cross-validation.

Fields Methods LoC Extracted graphs

Classes Count Min Max Avg Min Max Avg Min Max Avg Graphs Vertices Edges

Thread-safe 115 1 64 8.7 2 163 34.7 13 4,264 430.2 1,989 128,493 150,850
Thread-unsafe 115 0 55 4.3 1 103 23.8 7 1,931 219.7 2,871 151,410 170,473

All 230 0 64 6.4 1 163 29.2 7 4,264 323.1 4,860 279,903 321,323

Table 3: Effectiveness of classification via 10-fold cross vali-
dation across 230 classes with h = 3.

Thread-safe Thread-unsafe

Accuracy Precision Recall Precision Recall

94.5% 94.9% 94.0% 94.2% 95.0%

not prevent the approach from learning an effective classifier. The
number of graphs per category in Table 2 is disproportionate to the
number of fields and methods in the same category due to flattening
the class hierarchy (§ 3.1.3).

6.2.2 Results. To evaluate the effectiveness of TSFinder, we ap-
ply it to the 230 classes and measure precision, recall, and accuracy.
We perform 10-fold cross validation, a standard technique to evalu-
ate supervised machine learning. The technique shuffles and splits
all labeled data, i.e., our 230 thread-safe and thread-unsafe classes
into ten equally sized sets. For each set, it then trains a model with
the classes in the other nine sets and predicts the labels of the re-
maining classes using the trained model. We measure accuracy as
the percentage of correct classifications among all classifications
made by TSFinder. Wemeasure precision and recall both for predict-
ing thread safety and for predicting thread unsafety. With respect to
thread (un)safety, precision means the percentage of correct thread
(un)safety predictions among all predictions saying that a class is
thread-(un)safe. Recall means the percentage of classes classified as
thread-(un)safe among all classes that are actually thread-(un)safe.

Table 3 shows the results of the 10-fold cross validation. The
classification accuracy is 94.5%, i.e., TSFinder correctly predicts
the thread safety of the vast majority of classes. The precision and
recall results allow the reader to further understand how incorrect
predictions are distributed. For example, the fact that the precision
for thread safety is 94.9% means the following: When the approach
predicts a class to be thread-safe, then this prediction is correct
in 94.9% of the cases. Similar, the recall for thread-safety of 94.0%
means that TSFinder finds 94.0% of all thread-safe classes andmisses
the remaining 6%.

6.2.3 Manual Inspection. To better understand the limitations
of TSFinder, we inspect some of the mis-classified classes.

Thread-safe class predicted as not thread-safe. TSFinder mistak-
enly predicts the thread-safe ConcurrentLinkedQueue class to
be thread-unsafe. This queue implementation builds upon a non-
blocking algorithm [38]. Since our training set includes only six
classes that use a similar lock-free implementation, the training

data may not be sufficient for the classifier to generalize to the
ConcurrentLinkedQueue implementation. Nevertheless, TSFinder
correctly predicts some of the other classes that use non-blocking
implementations.

Thread-unsafe class predicted as thread-safe. The approach pre-
dicts TreeSet and EnumSet as thread-safe, even though they are
thread-unsafe implementations of the abstract class AbstractSet.
We suspect these misclassification to be due limitations of the the
learned model to generalize to previously unseen cases.

Inaccurate documentation. TSFinder classifies PKIXCertPath-
ValidatorResult as thread-safe, even though its documentation
labels it as not thread-safe. Manually inspecting the implementa-
tion shows that the class is indeed thread-safe. The private fields
of the class are initialized by the constructor and after that can-
not be written to. This case illustrates that TSFinder can not only
add otherwise missing documentation, but could also be useful for
validating existing documentation.

In summary, our classifier correctly predicts the thread
safety of a class in 94.5% of the cases. The precision and
recall for identifying thread-safe classes are 94.9% and 94.0%,
respectively. We conclude that the approach achieves its goal
of automatically and precisely identifying whether a class is
supposed to be thread-safe.

6.3 RQ3: Efficiency of TSFinder
We evaluate the efficiency of our approach by measuring the time
required for the different steps. All experiments are performed on
a machine with 4 Intel i7-4600U CPU cores and 12GB of memory.
Training the classifier with a set of training classes is a one-time
effort. For the 230 training classes that we use in this evaluation,
the training takes approximately 11.7 minutes, including all com-
putation steps, such as extracting graphs, computing graph kernels,
and training the SVM model. When querying TSFinder with a new
class, the approach extracts graphs from this class and classifies the
class based on the graphs. The former step takes about 3 seconds
and it dominates the latter which is negligible, on average over all
230 training classes.

TSFinder stores graphs extracted from training classes as part of
its trained model. These graphs are used to compute the pairwise
similarity of graphs extracted from the class under inspection to
build the vector embedding of the class. For our model trained with
230 graphs, the total size of the compressed graphs is 0.6 MB, i.e.,
the space consumed by the model graphs is negligible.
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Table 4: Effect of the WL kernel iterations parameter h on
classification.

h 1 2 3 4 5 6 7

Accuracy (%) 89.7 94.1 94.5 94.4 93.9 94.1 94.1

Table 5: Effectiveness of the graph-based TSFinder against
the SimpleClassifier classifier.

Accuracy

Classifier TSFinder SimpleClassifier

SVM (SGD6 with hinge loss) 94.5% 75.0%
Random forest 94.1% 79.3%
SVM (SMO7) 92.5% 70.6%
SVM (SGD with log loss) 92.0% 74.3%
Additive logistic regression 92.8% 74.5%

We conclude that TSFinder is time and space efficient enough
to document hundreds of classes, e.g., of a third-party library,
in reasonable time and with minimal space overhead.

6.4 RQ4: Comparison with Alternative
Approaches

As the default classification algorithm, we use a SVMwith stochastic
gradient decent (SGD) and the hinge loss function. We empirically
set the learning rate to 0.0001 and the number of WL-iteration h
to 3. The following compares this configuration with alternative
approaches.

6.4.1 Configuration of the WL Graph Kernel. To compare field-
focused graphs with each other, TSFinder uses theWL graph kernel,
which has a parameter h that determines to what extent should it
compress node labels. Table 4 shows the effect of h on the classifica-
tion accuracy. The results suggest that h = 3 is an appropriate value
for h and that small variations of the parameter do not significantly
change the accuracy.

6.4.2 Classification Algorithm. TSFinder uses a classification
algorithm that determines whether a given class vector is likely
thread-safe or not (§ 4.2.3). We evaluate several other popular algo-
rithms in addition to our default of SVM with stochastic gradient
descent and hinge loss. Table 5 shows the accuracy of TSFinder
with four other classification algorithms, each with the default
configuration of hyperparameters provided by Weka. The results
show that the accuracy is only slightly influenced by the choice of
classification algorithm, as it ranges between 92.0% and 94.5%.

6.4.3 Simple Class-level Features. We evaluate whether our
graph-based view on classes could be replaced by a simpler ap-
proach that summarizes class-level features into a vector. The in-
tuition behind this set of features is that as a human, we tend to

6Stochastic Gradient Descent
7Sequential Minimal Optimization

believe that, for example, a class with high percentage of synchro-
nized methods is probably more likely intended to be thread-safe
than a class with fewer synchronized methods. Specifically, we
consider the following class-level features:

• Percentage of fields that are volatile.
• Percentage of fields that are public and volatile.
• Percentage of methods that are either synchronized or con-
tain a synchronized block.

• Percentage of methods that are either public and synchro-
nized or public and contain a synchronized block.

Based on a feature vector for each of our 230 classes, we train and
evaluate a classifier using the same 10-fold cross validation strategy
as above. We call this approach SimpleClassifier. The last column
in Table 5 shows the accuracy obtained by SimpleClassifier using
different learning algorithms. All algorithms are used with their
default configurations, as provided by Weka. The highest accuracy
that SimpleClassifier achieves is 79.3%, using the random forest
learning algorithm, which is significantly lower than the accuracy
of TSFinder.

In summary, we find that the choice of classification al-
gorithm has little influence on the accuracy of TSFinder.
Comparing the approach with a classifier based on simple,
class-level features shows that our graph-based representa-
tion of classes yields a significantly more accurate classifier
(94.5% versus 79.3%).

7 LIMITATIONS
One limitation is that the training classes may not comprehensively
cover all possible patterns of thread-safe and thread-unsafe code.
As a result, the analysis may not be able to correctly classify a
previously unseen class that relies on a completely new way to im-
plement thread safety. We try to address this problem by selecting
a diverse set of training classes that are used in various application
domains and that cover different concurrency-related implementa-
tion patterns, e.g., immutable classes, classes that use synchronized
methods, and classes that use synchronization blocks.

Another limitation is that some of the supposedly thread-safe
training classes may have subtle concurrency bugs. If such bugs
were prevalent, the approach might learn patterns of buggy con-
current code. To mitigate this potential problem, the training set
contains well-tested and widely used classes, for which we assume
that most of their implementation is correct.

8 RELATEDWORK
8.1 Analysis of Concurrent Code
The analysis of concurrent software has been an active topic for
several years. Analyses that target thread-safe classes are partic-
ularly related to our work. ConTeGe [44] and Ballerina [41] have
pioneered test generation for such classes. Other test generators im-
prove upon them by considering coverage information [14, 61], by
steering test generation based on sequential test executions [51–53],
by comparing thread-safe classes against their superclasses [45], or
by targeting tests that raise exceptions [54]. SpeedGun [46] aims at
detecting performance regression bugs in thread-safe classes. Con-
Crash [8] creates tests that reproduce previously observed crashes.
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LockPeeker [34] tests API methods to find latent locking bugs. All
these approaches find correctness or performance bugs in thread-
safe classes. Instead, our work addresses the orthogonal problem
of inferring whether a class is even supposed to be thread-safe.

Beyond thread-safe classes, various dynamic analyses to find con-
currency bugs have been proposed, such as data race detectors [13,
19, 42, 55], analyses to detect atomicity violations [7, 18, 35, 71, 78],
and analyses to find other kinds of concurrency anomalies [36, 68].
While these techniques analyze a given execution, another direction
is to influence the schedule of an execution to increase the chance
to trigger concurrency-related misbehavior. Work on influencing
schedules includes random-based scheduling [12, 15], systematic
exploration of schedules [39, 66], and forcing schedules to trigger
previously identified, potential bugs [28, 57]. All these approaches
aim at bug detection, whereas TSFinder infers documentation.

Finally, there are various static analyses of concurrent code,
e.g., to find deadlocks [4, 40, 76], atomicity violations [20], locking
policies [17], and conflicting objects [69]. One strength of our work
compared to existing static analyses of concurrent code is the use
of a relatively simple static analysis and complementing it with
graph-based machine learning.

8.2 API Documentation
Lethbridge et al. [32] study how documentation is used in practice.
They find that documentation is often outdated and inconsistent.
Inferring documentation from source code alleviates these problems.
Another study focuses on problems that developers face when
learning a new API [50]. Their results include that many APIs
need more and better documentation. Our work addresses this
problem by providing an automated way to generate concurrency
specifications.

Improving documentation and how developers use it is an active
area of research. McBurney et al. [37] investigate how to prioritize
documentation effort based on source code attributes and textual
analysis. Treude and Robillard [63] augment API documentation
with relevant and otherwise missing information from Stack Over-
flow. APIBot is a bot created to answer natural language questions
by developers based on the available documentation [62]. Other
work finds relevant tutorial fragments for an API to help developers
better understand that API [27]. Another line of work searches for
mistakes in existing documentation by comparing it to the doc-
umented implementation [82] or by pinpointing comments that
risk becoming inconsistent when changing identifier names in the
code [49]. Our work also contributes to improving and adding other-
wise missing documentation, yet we tackle the so far understudied
problem of inferring concurrency-related documentation.

8.3 Specifications Mining
Specification mining automatically extracts a formal specification
from source code or from programs executions. Mined specification
include finite-state specifications of method calls [5, 31, 43, 75],
algebraic specifications [26], temporal specifications of API us-
ages [22, 73, 79], implicit programming rules [33], and locking
disciplines [16]. One benefit of mined specifications is to use them
as documentation. TSFinder can be seen as a form of specification

mining. In contrast to existing techniques, our work focuses on con-
currency documentation and uses machine learning to learn from
known examples how to infer this specification (documentation).

8.4 Graph Kernels
Kondor and Lafferty [30] and Gärtner et al. [23] introduced graph
kernels and others have been proposed since then, e.g., random-
walk kernels [29], shortest-path kernels [9], and subtree ker-
nels [48]. These graph kernels have been mainly used in bioinfor-
matics [10], in chemoinformatics [47, 59], and in web mining [72],
e.g., to find similar web pages and to analyze social networks.

Some existing work applies graph kernels to software. Wagner
et al. [70] analyze process trees with graph kernels to identify mal-
ware. Another approach [6] uses Markov chains constructed from
instruction traces of executables [6]. Furthermore, graph kernels
have been applied to statically identify malware by applying a
neighborhood hash graph kernel on call graphs [24] and by us-
ing graph edit distance on API dependency graphs [80]. Our work
tackles a different problem: the lack of documentation regarding
multi-threaded behavior. Another difference is the kind of infor-
mation that TSFinder extracts from classes and then feeds into
graph kernels. Finally, to the best of our knowledge, our experimen-
tal setup is orders of magnitude larger than any other study that
utilizes graph kernels in the context of program analysis.

9 CONCLUSION
This paper addresses the understudied problem of inferring
concurrency-related documentation. TSFinder is an automatic ap-
proach to infer whether a class is supposed to be thread-safe or not.
Our approach is a novel combination of lightweight static analysis
and graph-based classification. We show that our classifier has an
accuracy of 94.5% and therefore provides high-confidence docu-
mentation, while being efficient enough to scale to hundreds of
classes, e.g., in a third-party library.

We envision the long-term impact of this work to be twofold.
First, developers of concurrent software can use our approach to
decide if and how to use third-party classes. Second, we believe that
the technical contribution of this paper – combining lightweight
static analysis and graph-based classification – generalizes to other
problems. For example, future work could adapt the idea to other
class-level properties, such as immutability, and to other code prop-
erties, such as whether a piece of code suffers from a particular
kind of bug.
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