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Figure from:
Automated Program Repair. Claire Le Goues, Michael Pradel, Abhik Roychoudhury. Communications of the ACM, 2019
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Patch Validation in APR

Search-based APR yields many
plausible patches
■ Test suites are weak oracles

■ APR patches overfit to test suites

■ Patches pass test suites but fail in practice!

Existing solutions
■ More (& better) tests

■ Post-processing (e.g. select smaller patches, use
ML on code features, test-based heuristics, . . . )
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What about bug reports?
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Bug Reports (BR) in APR

■ In the fault localization (FL)
component of APR 1, 2

■ For bug classification to select a
suitable fix pattern for APR 3

■ That’s it!

1 iFixR: Bug Report driven Program Repair. Koyuncu et. al. FSE 2019
2 Automatically Repairing Programs Using Both Tests and Bug Reports Manish Motwani and Yuriy Brun. arXiv 2022
3 R2Fix: Automatically Generating Bug Fixes from Bug Reports. Liu et. al. ICST 2013
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How to exploit the relation between a bug
report and its fixing patch?
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Bug Reports & Patches

How to exploit the relation between a bug
report and its fixing patch?

Developers write patches
in response to bug reports.
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Patch Validation as QA

Bug report Patch
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Patch Validation as QA

Bug report Patch

Mostly in NL,
(with some code,
stack trace, ...)

Code diff

NL description
(e.g. commit msg)

✓

✗

Describes the
problem
I.e. the Question

Describes the
solution
I.e. the Answer

NLP
models
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Example

Bug report (Closure-96, Defects4J):
“Missing type-checks for var args notation”

Developer patch:
while (arguments.hasNext() &&

- parameters.hasNext()) {
+ (parameters.hasNext() ||
+ parameter != null && parameter.isVarArgs())) {

// If there are no parameters left in the list, then the
while loop

// above implies that this must be a var_args function.
+ if (parameters.hasNext()) {

parameter = parameters.next();
+ }

Developer commit message for patch:
“check var args properly”
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Bug Reports & Patches (2)

Semantic relation between BRs and NL patch
descriptions?
■ Collect BRs and commit messages from Defects4J

■ Ground truth: original pairs of (BR, Developer commit message)

■ Pairs of not matching (BR, Unrelated developer commit message)

■ Vectorize using BERT, and measure Eucleadean distance
between the BR and the commit message

■ Mann–Whitney U-test: p-value of 1.2e-32
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descriptions?
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■ Pairs of not matching (BR, Unrelated developer commit message)

■ Vectorize using BERT, and measure Eucleadean distance
between the BR and the commit message

■ Mann–Whitney U-test: p-value of 1.2e-32

The two distributions are different!
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Overview of Quatrain

Question-answering for patch
correctness evaluation
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Obtaining Patch Description

Two cases:

■ Developer-written patch:
⇒ Use developer-provided commit message

■ APR-generated patch:
⇒ Generate a patch summary using SOTA
code-change summarization
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Building Training Examples

Pairs of (Bug report, patch description)

Positive (correct) examples
■ (BR, Developer commit message)
■ (BR, APR-patch manually labelled ‘correct’)
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■ (BR, Unrelated developer commit message)
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Train QA Classifier

Binary classification: Given a pair of
(BR, PatchDesc.), does the patch description
answers (solves) the bug report or not.

Learn a function:
f : (Bug report, patch description) → {0, 1}
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Train QA Classifier

■ SOTA QA-model from NLP
■ Bi-LSTM with attention
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Evaluation: Setup

Dataset
■ Defects4J, Bugs.jar, Bears

■ Collected bug reports for the associated bugs

■ Manually labeled APR-patches from prev. work

■ Deduplicate patches

■ 9,135 bugs with BRs and labeled patches

□ 1,591 (17.4 %) Correct patches

□ 7,544 (82.6 %) Incorrect patches
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Evaluation: Setup

Metrics
■ AUC ROC

■ F1

■ Recall

□ +Recall = TP
TP+FN

□ - Recall = TN
TN+FP
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Experimental Setup
■ 10-group cross validation

■ Split data by bug id, prevent data leakage
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Effectiveness of Quatrain

At a default prediction threshold of 0.5

AUC F1 +Recall -Recall
% % %

Quatrain 0.886 62.8 73.9 87

■ F1 is impacted by imbalanced data
(17.4% correct, 82.6% incorrect)

■ When balancing the data, F1 is at 79.3%
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Effectiveness of Quatrain (2)

Thresholds

0.3 0.4 0.5 0.6 0.7

#TP 1,551 1,475 1,175 583 189
#TN 3,010 4,653 6,566 7,261 7,522
#FP 4,534 2,891 978 283 22
#FN 40 116 416 1008 1,402

+Recall(%) 97.5 92.7 73.9 36.6 11.9
- Recall(%) 39.9 61.7 87.0 96.2 99.7
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Effectiveness of Quatrain (3)

Against a DL-based approach where input is the
source code of the generated patches *

Approach AUC F1 +Recall -Recall
% % %

DL using LR 0.719 44.9 83.3 60.5
DL using RF 0.746 47.0 89.4 59.8
Quatrain 0.886 62.8 92.7 61.7

* Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair.
Tian et. al. ASE 2020
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Effectiveness of Quatrain (3)

Against PATCH-SIM, an execution-based
approach *

Approach AUC F1 +Recall -Recall
% % %

PATCH-SIM 0.581 5.3 76.9 39.2
Quatrain 0.792 12.7 76.9 66.7

* Identifying Patch Correctness in Test-Based Program Repair. Xiong et. al. ICSE 2018
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Effectiveness of Quatrain (3)
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Limitations

■ Supervised approach, requires
labelled data

■ Relies on the availability and quality of
patch descriptions
□ Would benefit from improvements in

code-change summarization
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Summary

Patch validation as QA-problem using
bug reports

■ Bug report is the question & patch is the answer

■ Bug reports in APR beyond fault localization

■ Code and data available at
github.com/Trustworthy-Software/Quatraingithub.com/Trustworthy-Software/Quatrain

https://github.com/Trustworthy-Software/Quatrain

