Is this Change the Answer to that Problem? Correlating Descriptions of Bug and Code Changes for Evaluating Patch Correctness

Haoye Tian¹, Xunzhu Tang¹, <u>Andrew Habib</u>¹, Shangwen Wang², Kui Liu³, Xin Xia³, Jacques Klein¹, Tegawendé F Bissyandé¹ ¹ University of Luxembourg, ² National University of Defense - China, ³ Huawei ASE'22 – Oct. 10 -14, 2022

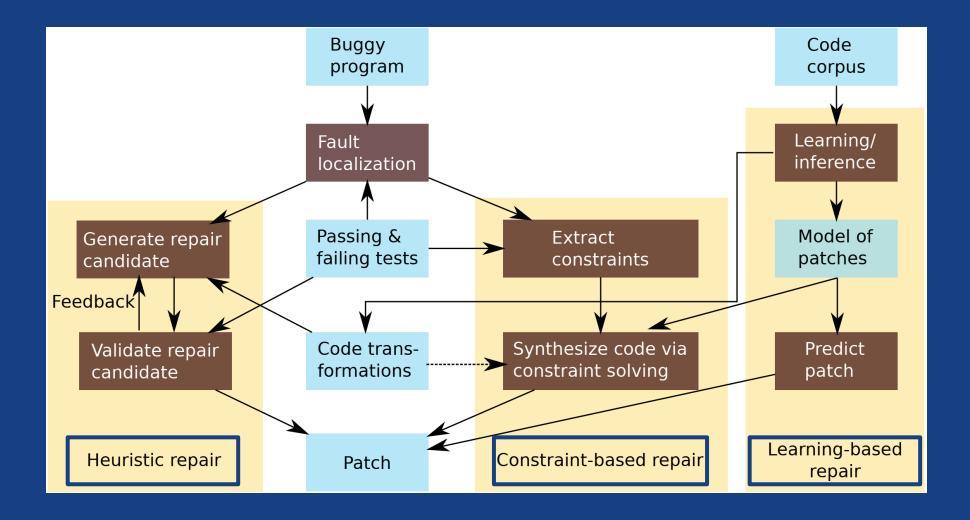


Figure from:

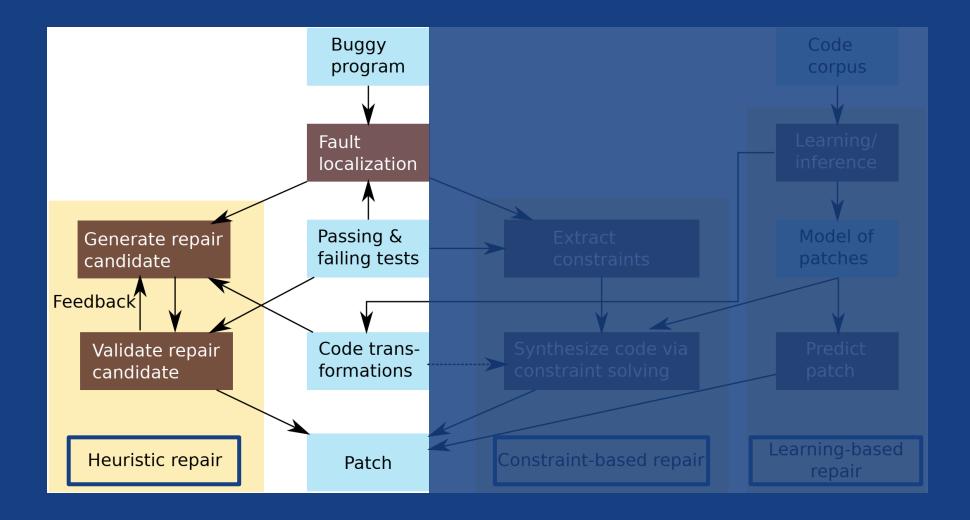


Figure from:

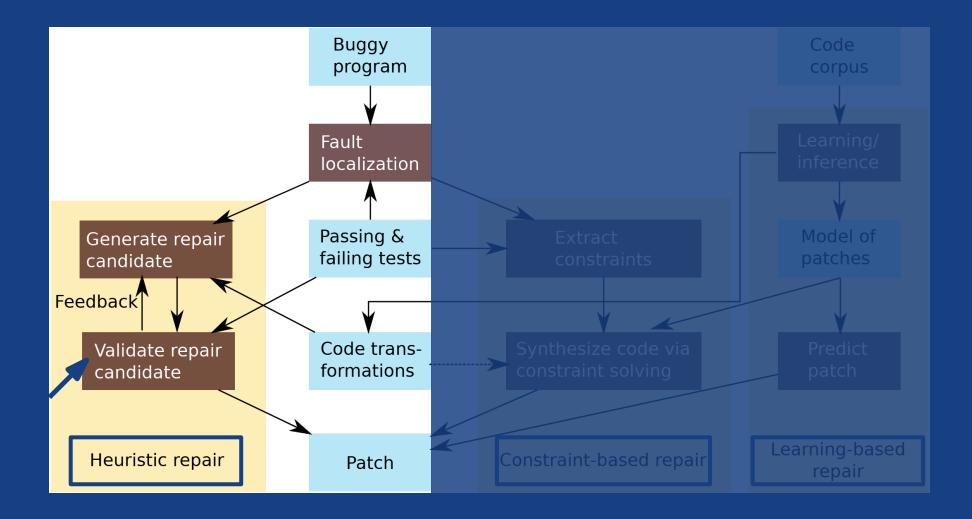


Figure from:

Patch Validation in APR

Search-based APR yields many plausible patches

- Test suites are weak oracles
- APR patches overfit to test suites
- Patches pass test suites but fail in practice!

Patch Validation in APR

Search-based APR yields many plausible patches

- Test suites are weak oracles
- APR patches overfit to test suites
- Patches pass test suites but fail in practice!

Existing solutions

- More (& better) tests
- Post-processing (e.g. select smaller patches, use ML on code features, test-based heuristics, ...)

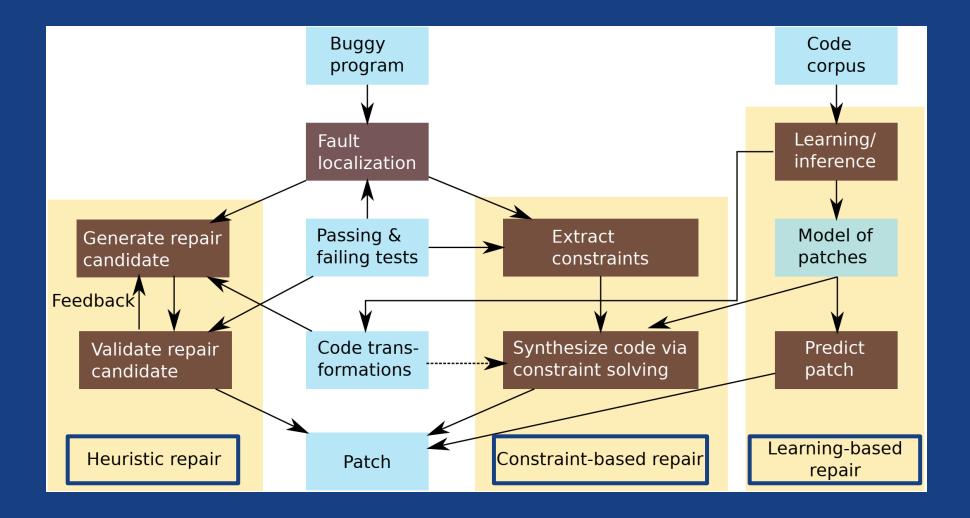


Figure from:

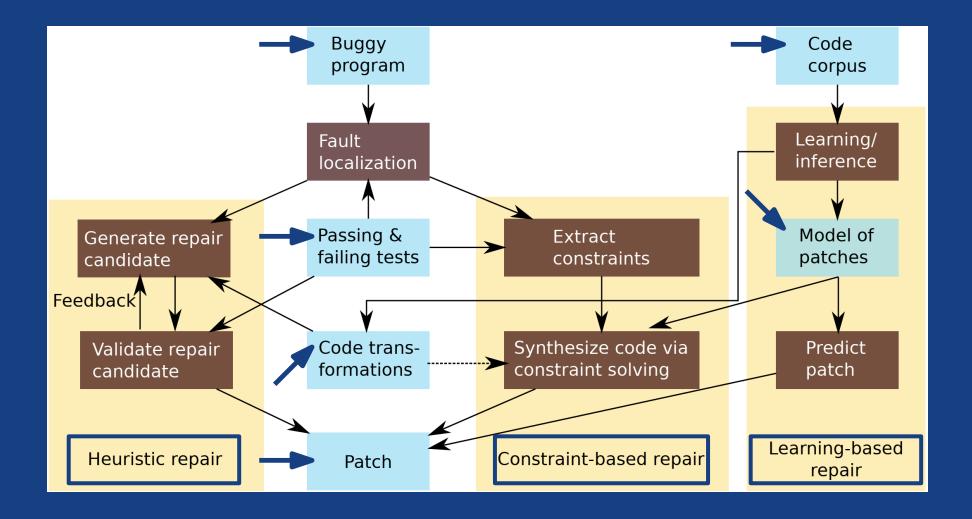


Figure from:

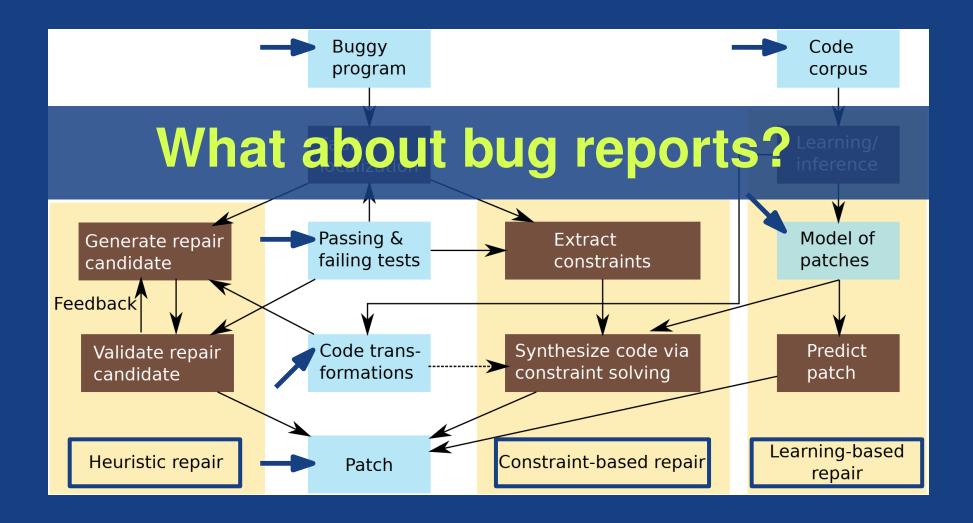


Figure from:

In the fault localization (FL) component of APR ^{1,2}

¹ iFixR: Bug Report driven Program Repair. *Koyuncu et. al.* FSE 2019 ² Automatically Repairing Programs Using Both Tests and Bug Reports Manish Motwani and Yuriy Brun. arXiv 2022

In the fault localization (FL) component of APR ^{1,2}

For bug classification to select a suitable fix pattern for APR³

¹ iFixR: Bug Report driven Program Repair. *Koyuncu et. al.* FSE 2019

² Automatically Repairing Programs Using Both Tests and Bug Reports Manish Motwani and Yuriy Brun. arXiv 2022

³ R2Fix: Automatically Generating Bug Fixes from Bug Reports. Liu et. al. ICST 2013

In the fault localization (FL) component of APR ^{1,2}

For bug classification to select a suitable fix pattern for APR³

That's it!

¹ iFixR: Bug Report driven Program Repair. *Koyuncu et. al.* FSE 2019

² Automatically Repairing Programs Using Both Tests and Bug Reports Manish Motwani and Yuriy Brun. arXiv 2022

³ R2Fix: Automatically Generating Bug Fixes from Bug Reports. Liu et. al. ICST 2013

How to exploit the relation between a bug report and its fixing patch?

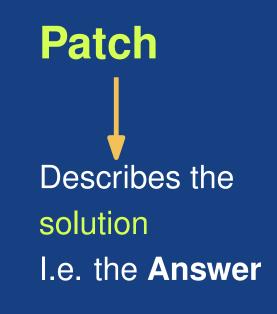
How to exploit the relation between a bug report and its fixing patch?

Developers write patches in response to bug reports.

Bug report

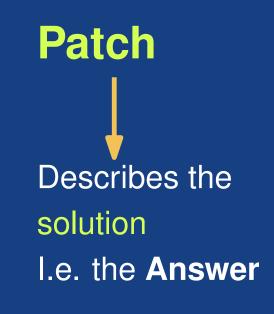
Describes the problem I.e. the Question

Bug report



Describes the problem I.e. the **Question** Mostly in NL, (with some code, stack trace, ...)

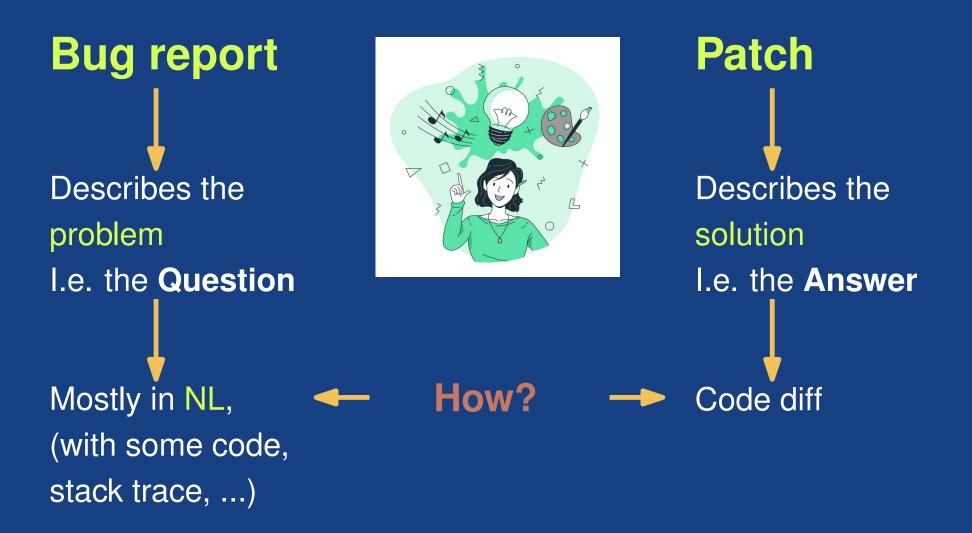
Bug report

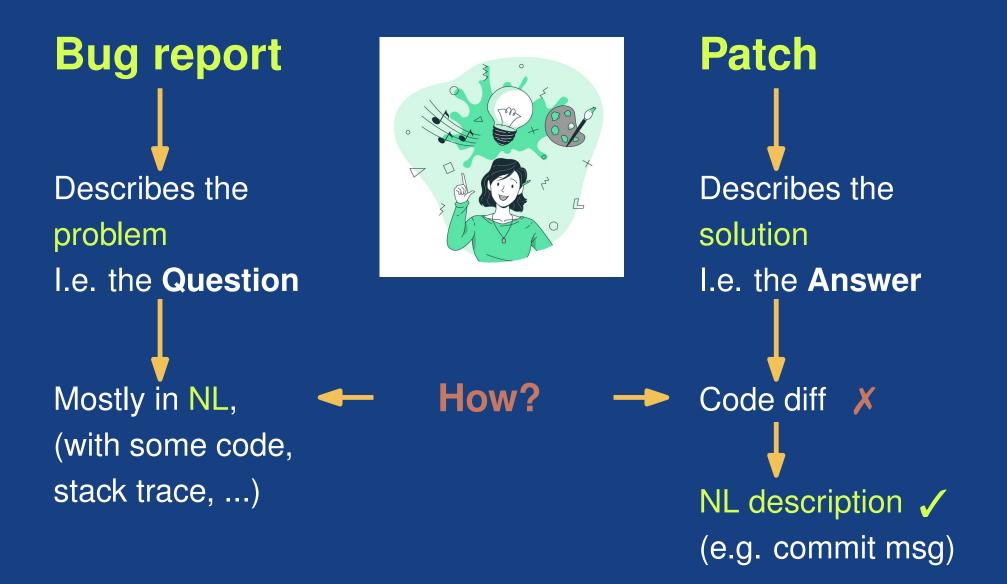


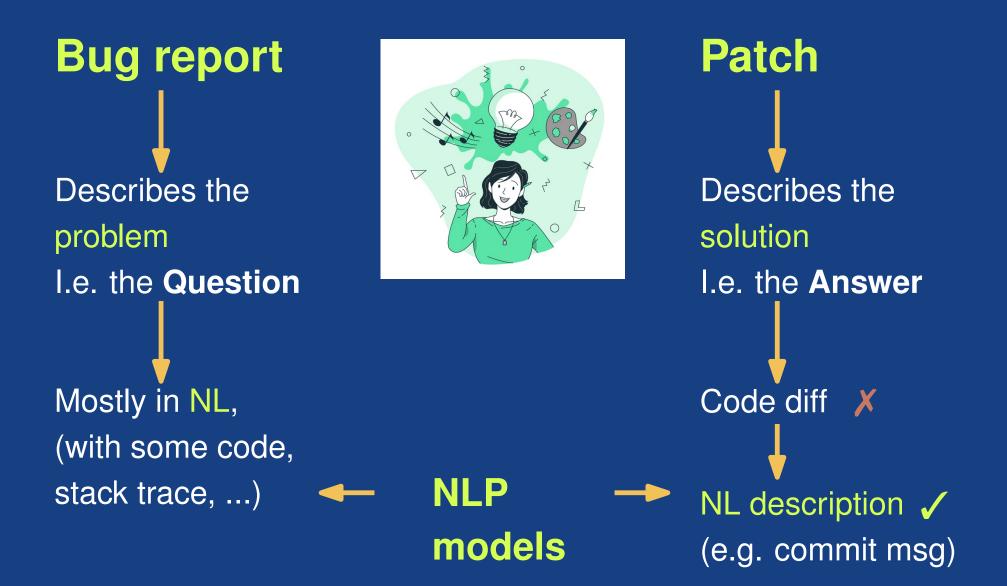
Describes the problem I.e. the **Question** Mostly in NL, (with some code, stack trace, ...)

Bug report

Patch Describes the solution I.e. the Answer Code diff







Bug report (Closure-96, Defects4J):

"Missing type-checks for var_args notation"

Bug report (Closure-96, Defects4J):

"Missing type-checks for var_args notation"

Developer patch:

Bug report (Closure-96, Defects4J):

"Missing type-checks for var_args notation"

Developer patch:

Developer commit message for patch:

```
"check var_args properly"
```

Bug report (Closure-96, Defects4J):

"Missing type-checks for var_args notation"

Developer patch:

Developer commit message for patch:

"check var_args properly"

Bug report (Closure-96, Defects4J):

"Missing type-checks for var_args notation"

Developer patch:

Developer commit message for patch:

"check var_args properly"

Semantic relation between BRs and NL patch descriptions?

- Collect BRs and commit messages from Defects4J
- Ground truth: original pairs of (BR, Developer commit message)
- Pairs of not matching (BR, Unrelated developer commit message)
- Vectorize using BERT, and measure Eucleadean distance between the BR and the commit message

Semantic relation between BRs and NL patch descriptions?

- Collect BRs and commit messages from Defects4J
- Ground truth: original pairs of (BR, Developer commit message)
- Pairs of not matching (BR, Unrelated developer commit message)
- Vectorize using BERT, and measure Eucleadean distance between the BR and the commit message

Semantic relation between BRs and NL patch descriptions?

- Collect BRs and commit messages from Defects4J
- Ground truth: original pairs of (BR, Developer commit message)
- Pairs of not matching (BR, Unrelated developer commit message)
- Vectorize using BERT, and measure Eucleadean distance between the BR and the commit message

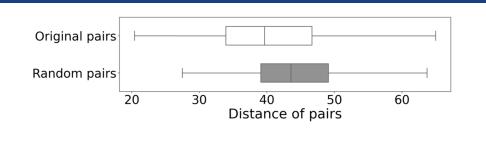


Figure 2: Distributions of Euclidean distances between bug and patch descriptions.

Semantic relation between BRs and NL patch descriptions?

- Collect BRs and commit messages from Defects4J
- Ground truth: original pairs of (BR, Developer commit message)
- Pairs of not matching (BR, Unrelated developer commit message)
- Vectorize using BERT, and measure Eucleadean distance between the BR and the commit message
- Mann–Whitney U-test: p-value of 1.2e-32

Semantic relation between BRs and NL patch descriptions?

- Collect BRs and commit messages from Defects4J
- Ground truth: original pairs of (BR, Developer commit message)
- Pairs of not matching (BR, Unrelated developer commit message)
- Vectorize using BERT, and measure Eucleadean distance between the BR and the commit message
- Mann–Whitney U-test: p-value of 1.2e-32

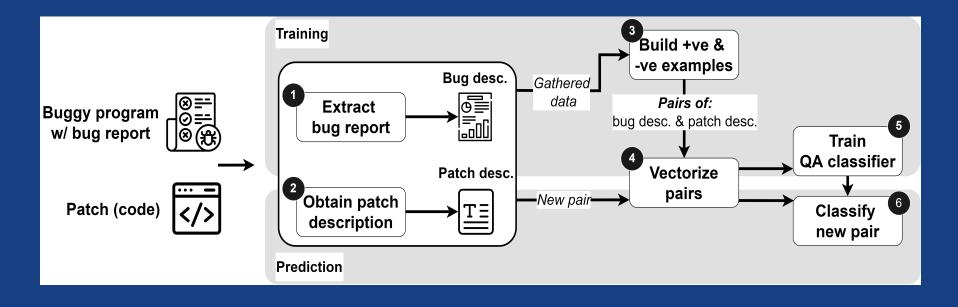
The two distributions are different!

Overview of Quatrain

Question-answering for patch correctness evaluation

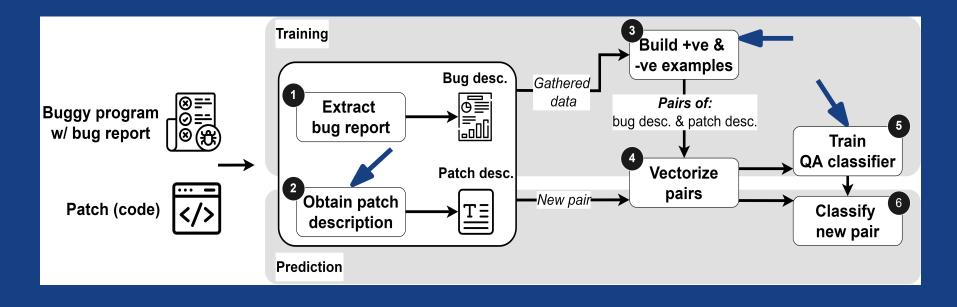
Overview of Quatrain

Question-answering for patch correctness evaluation



Overview of Quatrain

Question-answering for patch correctness evaluation



Obtaining Patch Description

Two cases:

Obtaining Patch Description

Two cases:

Developer-written patch:
> Use developer-provided commit message

Obtaining Patch Description

Two cases:

Developer-written patch:
⇒ Use developer-provided commit message

APR-generated patch:

⇒ Generate a patch summary using SOTA code-change summarization

Building Training Examples

Pairs of (Bug report, patch description)

Building Training Examples

Pairs of (Bug report, patch description)

Positive (correct) examples

- (BR, Developer commit message)
- (BR, APR-patch manually labelled 'correct')

Building Training Examples

Pairs of (Bug report, patch description)

Positive (correct) examples

(BR, Developer commit message)
(BR, APR-patch manually labelled 'correct')

Negative (incorrect) examples

- (BR, Unrelated developer commit message)
- (BR, APR-patch manually labelled 'incorrect')

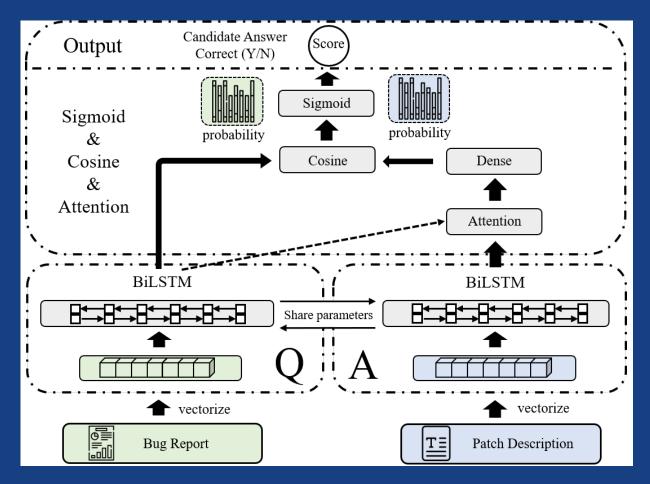
Train QA Classifier

Binary classification: Given a pair of (BR, PatchDesc.), does the patch description answers (solves) the bug report or not.

Learn a function: $f : (Bug report, patch description) \rightarrow \{0, 1\}$

Train QA Classifier

SOTA QA-model from NLPBi-LSTM with attention



Dataset

- Defects4J, Bugs.jar, Bears
- Collected bug reports for the associated bugs
- Manually labeled APR-patches from prev. work
- Deduplicate patches
- 9,135 bugs with BRs and labeled patches
 - □ 1,591 (17.4 %) Correct patches
 - □ 7,544 (82.6 %) Incorrect patches

Metrics AUC ROC **F**1 Recall \square +Recall = $\frac{TP}{TP+FN}$ \Box - Recall = $\frac{TN}{TN+FP}$

Experimental Setup

- 10-group cross validation
- Split data by bug id, prevent data leakage

Experimental Setup

- 10-group cross validation
- Split data by bug id, prevent data leakage

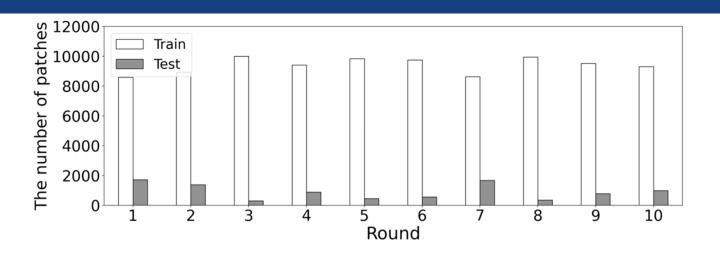


Figure 5: Distribution of Patches in Train and Test Data.

At a default prediction threshold of 0.5

	AUC	F1	+Recall	-Recall
		%	%	%
Quatrain	0.886	62.8	73.9	87

At a default prediction threshold of 0.5

	AUC	F1	+Recall	-Recall
		%	%	%
Quatrain	0.886	62.8	73.9	87

At a default prediction threshold of 0.5

	AUC	F1	+Recall	-Recall
		%	%	%
Quatrain	0.886	62.8	73.9	87

 F1 is impacted by imbalanced data (17.4% correct, 82.6% incorrect)

When balancing the data, F1 is at 79.3%

	Thresholds						
	0.3	0.3 0.4 0.5 0.6 0.7					
#TP	1,551	1,475	1,175	583	189		
#TN	3,010	4,653	6,566	7,261	7,522		
#FP	4,534	2,891	978	283	22		
#FN	40	116	416	1008	1,402		
+Recall(%)	97.5	92.7	73.9	36.6	11.9		
- Recall(%)	39.9	61.7	87.0	96.2	99.7		

	Thresholds				
	0.3	0.4	0.5	0.6	0.7
#TP	1,551	1,475	1,175	583	189
#TN	3,010	4,653	6,566	7,261	7,522
#FP	4,534	2,891	978	283	22
#FN	40	116	416	1008	1,402
+Recall(%)	97.5	92.7	73.9	36.6	11.9
- Recall(%)	39.9	61.7	87.0	96.2	99.7

Best balance between +Recall and - Recall

	Ihresholds				
	0.3	0.4	0.5	0.6	0.7
#TP	1,551	1,475	1,175	583	189
#TN	3,010	4,653	6,566	7,261	7,522
#FP	4,534	2,891	978	283	22
#FN	40	116	416	1008	1,402
+Recall(%)	97.5	92.7	73.9	36.6	11.9
- Recall(%)	39.9	61.7	87.0	96.2	99.7

Identify most of the correct patches while sacrificing - Recall

	THESHOIDS				
	0.3	0.4	0.5	0.6	0.7
#TP	1,551	1,475	1,175	583	189
#TN	3,010	4,653	6,566	7,261	7,522
#FP	4,534	2,891	978	283	22
#FN	40	116	416	1008	1,402
+Recall(%)	97.5	92.7	73.9	36.6	11.9
- Recall(%)	39.9	61.7	87.0	96.2	99.7

Thresholds

Filter out most of the incorrect patches while also incorrectly miss many correct ones

Against a DL-based approach where input is the source code of the generated patches *

Approach	AUC	F1	+Recall	-Recall
		%	%	%
DL using LR	0.719	44.9	83.3	60.5
DL using RF	0.746	47.0	89.4	59.8
Quatrain	0.886	62.8	92.7	61.7

* Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair. *Tian et. al.* ASE 2020

Against a DL-based approach where input is the source code of the generated patches *

Approach	AUC	F1	+Recall	-Recall
		%	%	%
DL using LR	0.719	44.9	83.3	60.5
DL using RF	0.746	47.0	89.4	59.8
Quatrain	0.886	62.8	92.7	61.7

^{*} Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair. *Tian et. al.* ASE 2020

Against PATCH-SIM, an execution-based approach *

Approach	AUC	F1	+Recall	-Recall
		%	%	%
PATCH-SIM	0.581	5.3	76.9	39.2
Quatrain	0.792	12.7	76.9	66.7

Identifying Patch Correctness in Test-Based Program Repair. Xiong et. al. ICSE 2018

Against PATCH-SIM, an execution-based approach *

Approach	AUC	F1	+Recall	-Recall
		%	%	%
PATCH-SIM	0.581	5.3	76.9	39.2
Quatrain	0.792	12.7	76.9	66.7

Identifying Patch Correctness in Test-Based Program Repair. Xiong et. al. ICSE 2018

Limitations

Supervised approach, requires labelled data

Relies on the availability and quality of patch descriptions

 Would benefit from improvements in code-change summarization

Summary

Patch validation as QA-problem using bug reports

- Bug report is the question & patch is the answer
- Bug reports in APR beyond fault localization
- Code and data available at github.com/Trustworthy-Software/Quatrain